Results 231 to 240 of about 7,619,088 (320)
CRISPRI‐mediated gene silencing and phenotypic exploration in nontuberculous mycobacteria. In this Research Protocol, we describe approaches to control, monitor, and quantitatively assess CRISPRI‐mediated gene silencing in M. smegmatis and M. abscessus model organisms.
Vanessa Point +7 more
wiley +1 more source
Quantitative Analysis of Polymers by MALDI-TOF Mass Spectrometry: Correlation Between Signal Intensity and Arm Number. [PDF]
Dalgic MS, Kumar S, Weidner SM.
europepmc +1 more source
NF90–NF45 functions as a negative regulator of methyltransferase‐like 3/14 (METTL3/14)‐mediated N6‐methyladenosine (m6A) modification on primary microRNAs (pri‐miRNAs). NF90–NF45 binds to anti‐oncogenic pri‐miRNAs and inhibits their m6A modification, thereby suppressing the biogenesis of anti‐oncogenic miRNAs.
Takuma Higuchi +6 more
wiley +1 more source
Investigating the originality of scientific papers across time and domain: A quantitative analysis
Culbert, Jack H. +2 more
openalex +1 more source
Quantitative label-free proteomic analysis of excretory-secretory proteins in different developmental stages of Trichinella spiralis [PDF]
Yadong Liu +9 more
openalex +1 more source
Aged human bmMSCs are seeded in the scaffold. Osteoblastic induction can slightly increase cell's bone‐forming activity to produce bone‐like tissues, shown as the sporadic xylenol orange‐stained spots (the lower left image). Notably, pioglitazone plus EGCG co‐treatment dramatically increases cell's bone‐forming activity and bone‐like tissue production (
Ching‐Yun Chen +6 more
wiley +1 more source
Quantitative analysis of the influence of faults on deep in situ stress under different stress types. [PDF]
Zheng P +11 more
europepmc +1 more source
Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley +1 more source

