Results 251 to 260 of about 2,144,494 (387)

Magnetic Field‐Assisted Conductive Nerve Guidance Conduit Enabling Peripheral Nerve Regeneration with Wireless Electrical Stimulation

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a conductive nerve guidance conduit integrated with wireless electrical stimulation through alternating magnetic fields, which induces currents and creates a supportive microenvironment for nerve regeneration. In vivo studies show that this approach significantly enhanced myelin restoration, gastrocnemius muscle regeneration ...
Shiheng Liu   +7 more
wiley   +1 more source

Joule‐Assisted Nanotherapeutic Urethral Stent (JANUS) for Spatiotemporal Theragenerative Treatment of Urethral Strictures

open access: yesAdvanced Functional Materials, EarlyView.
Joule‐assisted nanotherapeutic urethral stent harnesses a smart, biodegradable magnesium stent to orchestrate spatiotemporal theragenerative therapy for urethral strictures. Magnetically induced Joule heating enables on‐demand drug release and bacterial ablation, while simultaneously guiding urothelial regeneration.
Yuhyun Na   +15 more
wiley   +1 more source

An optimized protocol to isolate quiescent washed platelets from human whole blood and generate platelet releasate under clinical conditions. [PDF]

open access: yesSTAR Protoc
Weiss L   +7 more
europepmc   +1 more source

Fibrous Pb(II)‐Based Coordination Polymer Operable as a Photocatalyst and Electrocatalyst for High‐Rate, Selective CO2‐to‐Formate Conversion

open access: yesAdvanced Functional Materials, EarlyView.
A coordination polymer [Pb(tadt)]n prepared by a microwave‐assisted solvothermal method selectively reduces CO2 into formate under visible light with a high apparent quantum yield of ≈25% at 400 nm. It can function as a pre‐catalyst, along with conductive Ketjen Black, to form an active PbCO3/Pb3(CO3)2(OH)2 mixture that exhibits a high Faradaic ...
Chomponoot Suppaso   +8 more
wiley   +1 more source

Engineering the Hierarchical Porosity of Granular Hydrogel Scaffolds Using Porous Microgels to Improve Cell Recruitment and Tissue Integration

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy