Results 111 to 120 of about 230,640 (243)

In Vivo Cytosolic Delivery of Biomolecules into Neurons for Super‐Resolution Imaging and Genome Modification

open access: yesAdvanced Science, EarlyView.
The N1 peptide specifically targets neurons, enabling cytosolic delivery of fluorescent dyes and proteins for super‐resolution imaging and functional genetic modification. Abstract Efficient delivery of biomolecules into neurons has significant impacts on therapeutic applications in the central nervous system (CNS) and fundamental neuroscience research.
Xiaoqian Ge   +16 more
wiley   +1 more source

Generation of Neural Organoids and Their Application in Disease Modeling and Regenerative Medicine

open access: yesAdvanced Science, EarlyView.
Neural organoids provide a versatile platform for neurological research. Advances in organoid technology have partially achieved human neural tissue complexity in terms of tissue structure, cell diversity, and neural signaling, offering insights into neural disorders and regenerative strategies. Technology advances from biomaterials, bio‐manufacturing,
Ruiqi Huang   +4 more
wiley   +1 more source

Sortilin‐Mediated Rapid, Precise and Sustained Degradation of Membrane Proteins via mRNA‐Encoded Lysosome‐Targeting Chimera

open access: yesAdvanced Science, EarlyView.
The study identified sortilin as a promising LTR, enabling targeted degradation of oncogenic proteins through an mRNA‐encoded MedTAC strategy. In a mouse model, MedTACPTK7 reduced PTK7 by up to 80%, extended survival, and showed excellent pharmacokinetics without toxicity, providing a scalable platform for targeted therapies.
Xin Chang   +8 more
wiley   +1 more source

Transient Interdomain Interactions Modulate the Monomeric Structural Ensemble and Self‐Assembly of Huntingtin Exon 1

open access: yesAdvanced Science, EarlyView.
Polyglutamine (polyQ) tract expansion (≥ 36 amino acids) within the N‐terminal region of the Huntingtin protein (Httex1) causes Huntington's disease (HD), for which the underlying causes are not well‐understood. The authors performed computer simulations to understand the cause of HD at the molecular level.
Priyesh Mohanty   +2 more
wiley   +1 more source

Testosterone Delays Bone Microstructural Destruction via Osteoblast‐Androgen Receptor‐Mediated Upregulation of Tenascin‐C

open access: yesAdvanced Science, EarlyView.
This study reveals that Testosterone–Androgen Receptor signaling delays elderly male bone destruction by upregulation of the osteoblastic extracellular tenascin‐C (TNC). The osteoprotective effect of fibrinogen C‐terminus of TNC is demonstrated in male osteoporotic mice model that osteoblast‐specific Ar‐knockout, potentially via inhibition of ...
Yong Xie   +8 more
wiley   +1 more source

The Molecular Basis of Amino Acids Sensing

open access: yesAdvanced Science, EarlyView.
Amino acids are essential as protein building blocks and signaling molecules, enabling metabolic regulation. Cells sense amino acid levels to control protein synthesis, maintain homeostasis, and adapt to nutritional changes. This review explores recent advances in amino acid sensing mechanisms across organisms, highlighting their roles in cellular ...
Cong Jiang   +3 more
wiley   +1 more source

Potent Cross‐neutralizing Antibodies Reveal Vulnerabilities of Henipavirus Fusion Glycoprotein

open access: yesAdvanced Science, EarlyView.
Hendra and Nipah viruses (HNVs) pose significant threats to global health. This work reports potent cross‐neutralizing antibodies targeting the fusion glycoprotein (F) and reveals shared features of these antibodies and vulnerabilities of F, thereby guiding the rational design of countermeasures against HNVs and similar pathogens.
Yi Ren   +19 more
wiley   +1 more source

Activation of Kir4.1 Channels by 2‐D08 Promotes Myelin Repair in Multiple Sclerosis

open access: yesAdvanced Science, EarlyView.
Multiple sclerosis causes myelin loss and neurological dysfunction. This study shows that 2‐D08, a small molecule targeting Kir4.1 channels, promotes OPCs differentiation via FYN tyrosine kinase phosphorylation and the FYN/MYRF pathway. It significantly improves myelin repair and motor deficits in EAE mice and marmosets, highlighting its potential as a
Mingdong Liu   +17 more
wiley   +1 more source

Structure and Antigenicity of Kaposi's Sarcoma‐Associated Herpesvirus Glycoprotein B

open access: yesAdvanced Science, EarlyView.
Kaposi's sarcoma‐associated herpesvirus (KSHV) causes severe cancers without effective treatments. This study presents an atomic model of KSHV's critical infection protein, gB, revealing a unique structure shared with related herpesviruses like Epstein‐Barr virus (EBV). The structural similarity highlights vulnerable targets for antibodies, guiding the
Xin‐Yan Fang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy