Results 151 to 160 of about 491,094 (347)

Cell Calcification Models and Their Implications for Medicine and Biomaterial Research

open access: yesAdvanced Healthcare Materials, EarlyView.
Calcification, is the process by which the tissues containing minerals are formed, occurring during normal physiological processes, or in pathological conditions. Here, it is aimed to give a comprehensive overview of the range of cell models available, and the approaches taken by these models, highlighting when and how methodological divergences arise,
Luke Hunter   +5 more
wiley   +1 more source

Guided Bone Regeneration Membrane Materials Loaded with Chimeric Nanovesicles Promote Early Bone Defect Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Early bone regeneration is challenged by poor osteogenic microenvironments. We developed a novel guided bone regeneration (GBR) membrane: a plasma‐treated polycaprolactone (PT‐PCL) electrospun nanofiber functionalized with ultrasound sequentially extruded stromal vascular fraction chimeric vesicles (USE‐SCNVs). USE‐SCNVs require less equipment, enhance
Yufan Zhang   +13 more
wiley   +1 more source

A Novel Core–Shell Hydrogel 3D Model for Studying Macrophage Mechanosensing and Foreign Body Giant Cell Formation

open access: yesAdvanced Healthcare Materials, EarlyView.
The foreign body response (FBR) to biomaterials is primarily driven by macrophages, which often fuse into destructive foreign body giant cells (FBGCs). To address the limited understanding of FBGC formation, a novel microscale core–shell hydrogel 3D model is developed using heterogeneous alginate‐collagen microcapsules with varying stiffness, offering ...
Manisha Mahanty   +5 more
wiley   +1 more source

Vibration‐Mediated Recovery of Irradiated Osteocytes and Their Regulatory Role in Breast Cancer Bone Metastasis

open access: yesAdvanced Healthcare Materials, EarlyView.
Radiotherapy damages bone and disrupts osteocyte function, yet mechanically mediated protection remains largely unexplored. This study demonstrates that low‐magnitude, high‐frequency (LMHF) vibration mitigates irradiated osteocyte apoptosis, restores their ability to regulate breast cancer extravasation, and acts synergistically with radiotherapy to ...
Xin Song   +7 more
wiley   +1 more source

A Human Kidney Tubuloid Model of Repeated Cisplatin‐Induced Cellular Senescence and Fibrosis for Drug Screening

open access: yesAdvanced Healthcare Materials, EarlyView.
Replicating aging and senescence‐related pathophysiological responses in kidney organoids remains a significant challenge. Human adult renal tubular organoid, tubuloids, are successfully developed recapitulating cellular senescence that is the central pathophysiological mechanism of chronic kidney disease (CKD).
Yuki Nakao   +20 more
wiley   +1 more source

Geometrically Tunable Scaffold‐Free Muscle Bioconstructs for Treating Volumetric Muscle Loss

open access: yesAdvanced Healthcare Materials, EarlyView.
Volumetric muscle loss is associated with traumatic muscle resulting in permanent functional impairment. Mold‐based, scaffold‐free, high‐density muscle tissue bioconstructs are developed in customizable geometric shapes and sizes. The transplanted rectangular solid‐shaped muscle bioconstructs improved muscle force recovery and tissue regeneration in ...
Bugra Ayan   +8 more
wiley   +1 more source

The role of VEGF receptors in angiogenesis; complex partnerships [PDF]

open access: yes, 2018
.: Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to
Ballmer-Hofer, K.   +2 more
core  

Programmable Compliance in Small‐Diameter Vascular Grafts by Design of Melt‐Electrowritten Scaffold Architectures for In Situ Tissue Engineering

open access: yesAdvanced Healthcare Materials, EarlyView.
Small‐diameter vascular grafts with compliance tunable by design are fabricated via melt electrowriting. By controlling the winding angle of intertwined helical fibers, grafts with compliances matching those of human vessels, from veins to arteries, are realized. This holds the potential of avoiding a compliance mismatch, which has been identified as a
Kilian Maria Arthur Mueller   +8 more
wiley   +1 more source

Bioprinting Organs—Science or Fiction?—A Review From Students to Students

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy