Results 111 to 120 of about 787,372 (189)
This study introduces an extracorporeal hemoperfusion system incorporating porous microbeads embedded with autocatalytic ceria nanoparticles (CeNPs) for targeted reactive oxygen species (ROS) scavenging in septic shock. The blood‐compatible hemoperfusion cartridge demonstrated significant improvements in survival, hemodynamic stability, and organ ...
Pilseon Im+10 more
wiley +1 more source
Joule‐assisted nanotherapeutic urethral stent harnesses a smart, biodegradable magnesium stent to orchestrate spatiotemporal theragenerative therapy for urethral strictures. Magnetically induced Joule heating enables on‐demand drug release and bacterial ablation, while simultaneously guiding urothelial regeneration.
Yuhyun Na+15 more
wiley +1 more source
Bioresorbable and Wireless Rechargeable Implanted Na‐ion Battery for Temporary Medical Devices
An all‐solid‐state bioresorbable Na‐ion battery is developed, composed entirely of bio‐eliminable materials. In vivo and ex vivo tests confirmed harmless disintegration of this implanted battery. Lifetime of the implanted battery can be precisely controlled by adjusting the dissolvable encapsulation layer's thickness.
Vedi Kuyil Azhagan Muniraj+8 more
wiley +1 more source
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski+9 more
wiley +1 more source
Ultrathin, flexible neural probes are developed with an innovative, biomimetic design incorporating brain tissue‐compatible materials. The material system employs biomolecule‐based encapsulation agents to mitigate inflammatory responses, as demonstrated through comprehensive in vitro and in vivo studies.
Jeonghwa Jeong+7 more
wiley +1 more source
Time‐Controlled Dual Targeting to Program Systemic and Intercellular Transfer of Therapeutic Effects
Aspirin‐liposomes loaded onto monocytes enable inflammation‐triggered targeting and efficient hand‐over of aspirin to inflamed cells. Monocytes uptake a significant portion of aspirin‐liposomes, prolonging therapeutic action. This approach enhances anti‐inflammatory effects through intercellular transfer, demonstrating a translational strategy for ...
Seung Eun Yu+6 more
wiley +1 more source
Surface‐attached multilayer micromagnet systems are fabricated by two‐photon crosslinking. The pillar‐shaped micro actuators consist of a soft and flexible surface‐attached cell‐repellent hydrogel layer at the bottom, acting as a hinge and a cell‐adhesive hydrophobic polymer filled with magnetic nanoparticles.
Nicolas Geid+5 more
wiley +1 more source
In this work, melt electrowriting is used to fabricate a 3D printed scaffold design that generates engineered cardiac tissues with in‐plane contraction, mimicking natural myocardium. It is shown that these tissues display advanced maturation and functionality.
Olalla Iglesias‐García+23 more
wiley +1 more source
Supramolecular biomimetic nanoaggregates (HFCu NAs), constructed with fluorinated histidine and copper ions via metal coordination and aromatic packing, exhibit enhanced reactive oxygen species (ROS)generation at tumor sites, which results in stepwise collapse of the extracellular matrix (ECM), affording tumor microenvironment responsive “turn‐on” 19F ...
Hui Wang+8 more
wiley +1 more source
Electric Pulse Regulated MXene Based Nanozymes for Integrative Bioelectricity Immuno‐Cancer Therapy
MXenzyme‐mediated bioelectricity cancer therapy (MXenzyme‐BECT) enhances cancer cell death through irreversible depolarization, ion channel disruption, ROS generation, and immunogenic cell death. Computational simulations reveal the electrical mechanisms by which MXenzyme acts on single cells and support to predict treatment parameters. Next‐generation
Sanghee Lee+6 more
wiley +1 more source