Results 141 to 150 of about 119,011 (331)

MOFs and COFs in Electronics: Bridging the Gap between Intrinsic Properties and Measured Performance

open access: yesAdvanced Functional Materials, EarlyView.
Metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) hold promise for advanced electronics. However, discrepancies in reported electrical conductivities highlight the importance of measurement methodologies. This review explores intrinsic charge transport mechanisms and extrinsic factors influencing performance, and critically ...
Jonas F. Pöhls, R. Thomas Weitz
wiley   +1 more source

A remaining useful life prediction method of SiC MOSFET considering failure threshold uncertainty

open access: yesIET Power Electronics
Different methods have been developed to predict power devices' remaining useful life (RUL). The existing methods need to specify the failure thresholds corresponding to failure precursors of power devices based on historical data.
Qunfang Wu   +3 more
doaj   +1 more source

Investigating Experimental Short Term Imprint Dynamics in Ferroelectric Hafnium Oxide Through Phase‐Field Modeling

open access: yesAdvanced Functional Materials, EarlyView.
Phase‐field modeling reveals the mechanisms behind short‐term ferroelectric imprint in Hf0.5Zr0.5O2 polycrystalline thin films. Combined with a charge trapping model, the proposed framework accurately reproduces coercive field shifts with pause time and their recovery through field cycling in polarization‐voltage measurements, offering valuable ...
Kévin Alhada‐Lahbabi   +10 more
wiley   +1 more source

Multicolor Optoelectronic Synapse Enabled by Photon‐Modulated Remote Doping in Solution‐Processed Van Der Waals Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
Multicolor optoelectronic synapses are realized by vertically integrating solution‐processed MoS2 thin‐film and SWCNT. The electronically disconnected but interactive MoS2 enables photon‐modulated remote doping, producing a bi‐directional photoresponse.
Jihyun Kim   +8 more
wiley   +1 more source

Device Integration Technology for Practical Flexible Electronics Systems

open access: yesAdvanced Functional Materials, EarlyView.
Flexible device integration technologies are essential for realizing practical flexible electronic systems. In this review paper, wiring and bonding techniques critical for the industrial‐scale manufacturing of wearable devices are emphasized based on flexible electronics.
Masahito Takakuwa   +5 more
wiley   +1 more source

Thermal property evaluation of a 2.5D integration method with device level microchannel direct cooling for a high-power GaN HEMT device

open access: yesMicrosystems & Nanoengineering, 2022
Tingting Lian   +7 more
doaj   +1 more source

Complex Cryptographic and User‐Centric Physically Unclonable Functions Enabled by Strain‐Sensitive Nanocrystals via Selective Ligand Exchange

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates electromechanical PUFs that improve on traditional electric PUFs. The electron transport materials are coated randomly through selective ligand exchange. It produces multiple keys and a key with motion dependent on percolation and strain, and approaches almost ideal inter‐ and intra‐hamming distances.
Seungshin Lim   +7 more
wiley   +1 more source

Thermal Phase‐Modulation of Thickness‐Dependent CVD‐Grown 2D In2Se3

open access: yesAdvanced Functional Materials, EarlyView.
A comprehensive study of CVD‐grown 2D In2Se3 reveals a distinct thickness‐dependent phase landscape and a reversible, thermally driven transformation between β″ and β* variants. In situ TEM electron diffraction and Raman spectroscopy reveal structural dynamics, while the structural invariance of the α‐phase in ultrathin regimes highlights its stability—
Dasun P. W. Guruge   +6 more
wiley   +1 more source

Phase Change Material‐Driven Tunable Metasurface for Adaptive Terahertz Sensing and Communication in 6G Perceptive Networks

open access: yesAdvanced Functional Materials, EarlyView.
This study explores the benefits of metasurfaces made from functional materials, highlighting their ability to be adapted and improved for various high‐frequency applications, including communications and sensing. It first demonstrates the potential of these functional material‐based metasurfaces to advance the field of sub‐THz perceptive networks ...
Yat‐Sing To   +5 more
wiley   +1 more source

Multiband Switchable Microwave Absorbing Metamaterials Based on Reconfigurable Kirigami–Origami

open access: yesAdvanced Functional Materials, EarlyView.
A reconfigurable metamaterial featuring tunable microwave‐absorbing and load‐bearing performance is proposed. Stretchable kirigami and bistable origami configurations are integrated as actuating components, and the synergistic deformation mechanisms are systematically analyzed.
Weimin Ding   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy