Results 241 to 250 of about 358,538 (335)

Regulating Tumor Metabolic Reprogramming with Biomimetic Co‐Delivery of Simvastatin and Kynureninase for Immunotherapy

open access: yesAdvanced Science, EarlyView.
After the intravenous injection of biomimetic and pH/ROS‐responsive PTSK@CRM, the nanoparticles can be accumulated in tumors and release Sim and KYNase to inhibit the tumor growth, regulate the metabolism of cholesterol and Kyn, and reverse the immunosuppressive tumor microenvironment.
Jiaxin Yin   +6 more
wiley   +1 more source

Lycorine suppresses hepatocellular carcinoma via the reprogramming of myeloid and epithelial cells

open access: hybrid
Xinyu Gu   +8 more
openalex   +1 more source

Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation

open access: yesAdvanced Science, EarlyView.
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin   +14 more
wiley   +1 more source

HPD is an m6A Methyltransferase that Protects Colorectal Cancer Cells from Ferroptotic Cell Death by m6A Methylating SLC7A11/GPX4

open access: yesAdvanced Science, EarlyView.
This study reveals that the tyrosine metabolic enzyme HPD functions as a previously uncharacterized, METTL3‐independent m6A methyltransferase. It promotes colorectal tumor progression by coordinately regulating the SLC7A11/GPX4 axis to suppress ferroptosis.
Jiyan Wang   +17 more
wiley   +1 more source

Temporal transcriptome reprogramming coordinates defense activation and metabolic repression in tobacco roots during Ralstonia solanacearum infection

open access: green
Chun-Mei Lai   +8 more
openalex   +1 more source

Cancer Cell‐Intrinsic Cholesterol Induces Lipid‐Associated Macrophage Differentiation via SP1 Palmitoylation to Promote Prostate Cancer Progression

open access: yesAdvanced Science, EarlyView.
Cancer cell‐intrinsic cholesterol promotes the S‐palmitoylation of SP1, increasing its nuclear translocation and driving the transcription and secretion of MDK, which in turn facilitates the differentiation of macrophages into a lipid‐associated phenotype.
Shirong Peng   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy