Results 31 to 40 of about 145,608 (244)
Reihs et al. present the development of a humanized, animal‐free synovial membrane model for osteoarthritis. Methods include 3D biochip cultures of human‐primary OA synoviocytes with matrix and serum surrogates. Results show replication of synovial architecture and increased Yap1 expression.
Eva I. Reihs+17 more
wiley +1 more source
A 3D‐printed PCL scaffold coated with Arginine was laminated with electrospun polyvinyl alcohol (PVA) nanofibers containing cationic cellulose nanocrystals (PVA@cCNC). This created nanoisland‐like regions of aligned and random cCNC‐rich fibers. The composite scaffold, under fluid shear stimulation, modulated macrophage polarization from M1 to M2 ...
Keya Ganguly+8 more
wiley +1 more source
Microphysiological Systems for Comorbidity Studies: Chronic Kidney Disease and Osteoarthritis
This review highlights the potential of organ‐on‐a‐chip systems for studying comorbidities, using chronic kidney disease (CKD) and osteoarthritis (OA) as examples. It summarizes recent advances in kidney‐on‐a‐chip and joint‐on‐a‐chip models and discusses their current and potential application in investigating CKD, OA, and CKD‐OA comorbidity, aiming to
Mingying Han+7 more
wiley +1 more source
n ...
openaire +2 more sources
Bone fracture healing is a complex, timely orchestrated scenario involving multiple cell types and a plethora of cytokines and regulatory factors. To gain further insight, an in vitro model to a) study macrophage polarization under mechanical load in a fibrin hydrogel and b) subsequently assess the effect of conditioned media derived from macrophages ...
Anne Géraldine Guex+4 more
wiley +1 more source
Si Inhibited Osteoclastogenesis: The Role of Fe and the Fenton Reaction
Silicate (Si) inhibition of osteoclastogenesis, is mediated by Fe. Si chemical interactions with Fe inhibit the Fenton reaction and intercellular ROS availability. This reduction in ROS availability inhibits osteoclastogenesis. The addition of Fe, in Si‐inhibited osteoclast cultures, restores the Fenton reaction, and osteoclastogenesis.
Yutong Li+7 more
wiley +1 more source
This study investigates a synergistic effect between 3D‐printed surface features and mechanical micro‐strain in enhancing the osteogenic, angiogenic, and myogenic responses of human mesenchymal stem cells (hMSCs). Load‐induced mechanotransduction, facilitated by the implant's architectural design, significantly amplifies hMSC differentiation.
Se‐Hwan Lee+9 more
wiley +1 more source
Charge‐opposed reduced graphene oxide fillers are co‐integrated into biopolymeric nanocomposite scaffolds, synergistically enhance osteogenesis. Multiscale characterization reveals how surface chemistry and porosity dictate ectopic mineral architecture.
George Mihail Vlăsceanu+8 more
wiley +1 more source
Mesoporous Bioactive Glasses: A Powerful Tool in Tissue Engineering and Drug Delivery
This work is a comprehensive revision of bioactive glasses (BGs), pioneered by Prof. L.L. Hench, which are key in bone repair and regenerative medicine. Sol–gel methods and mesoporous designs enhanced their bioactivity, ions, and drug delivery. BGs now support gene therapy and 3D‐printed scaffolds, enabling personalized, multifunctional treatments in ...
Natividad Gómez‐Cerezo+3 more
wiley +1 more source
3D Bioprinted Renal Constructs Using Kidney‐Specific ECM Bioink System on Kidney Regeneration
A kidney‐specific bioink derived from decellularized porcine kidney tissue supports the encapsulation, viability, and maturation of human primary kidney cells within 3D bioprinted constructs. In vivo, it also promotes the recruitment of host renal progenitor cells, collectively enhancing structural and functional regeneration of renal tissue.
Gabriel Carreno‐Galeano+4 more
wiley +1 more source