Results 141 to 150 of about 22,541 (295)

Influence of key residues on the heterologous extracellular production of fungal ribonuclease U2 in the yeast Pichia pastoris [PDF]

open access: gold, 2009
Elisa Álvarez-García   +4 more
openalex   +1 more source

Comprehensive Profiling of N6‐methyladnosine (m6A) Readouts Reveals Novel m6A Readers That Regulate Human Embryonic Stem Cell Differentiation

open access: yesAdvanced Science, EarlyView.
This research deciphers the m6A transcriptome by profiling its sites and functional readout effects: from mRNA stability, translation to alternative splicing, across five different cell types. Machine learning model identifies novel m6A‐binding proteins DDX6 and FXR2 and novel m6A reader proteins FUBP3 and L1TD1.
Zhou Huang   +11 more
wiley   +1 more source

Opening new frontiers with catalytic nucleic acids in miRNA inhibition. [PDF]

open access: yesFront Pharmacol
Patutina O   +3 more
europepmc   +1 more source

RIBONUCLEASE

open access: yesJournal of Biological Chemistry, 1952
Jay S. Roth, Seymour W. Milstein
openaire   +1 more source

HRS Degradation‐Induced Nicotinamide Deficiency in Placental Extracellular Vesicles Triggers Preeclampsia by Disrupting Maternal‐Fetal Immune Homeostasis

open access: yesAdvanced Science, EarlyView.
This study shows that lower NAM levels in PE‐derived pEVs correlate with disease severity. NAM‐deficient pEVs reduce Th1 and Th17 inhibition, leading to PE‐like symptoms. NAM in pEVs inhibits Th1 via SIRT1 and Th17 via macrophages. Reduced NAM in PE‐EVs is due to decreased HRS expression in trophoblasts, resulting from elevated HSP27.
Haiyi Fei   +10 more
wiley   +1 more source

A Comparative Overview of the Role of Human Ribonucleases in Nonsense-Mediated mRNA Decay. [PDF]

open access: yesGenes (Basel)
da Costa PJ   +8 more
europepmc   +1 more source

Lactylation‐Driven YTHDC1 Alleviates MASLD by Suppressing PTPN22‐Mediated Dephosphorylation of NLRP3

open access: yesAdvanced Science, EarlyView.
In MASLD, YTHDC1 undergoes increased lactylation and ubiquitination, reducing its expression. AARS1 mediates lactylation at lysine 565, while disrupted binding to LDHA further promotes lactylation, suppressing YTHDC1. This downregulation enhances PTPN22 mRNA stability, leading to NLRP3 dephosphorylation and activation, which exacerbates inflammation ...
Feng Zhang   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy