Partial sums of random multiplicative functions and extreme values of a model for the Riemann zeta function [PDF]
We consider partial sums of a weighted Steinhaus random multiplicative function and view this as a model for the Riemann zeta function. We give a description of the tails and high moments of this object.
Marco Aymone, Winston Heap, J. Zhao
semanticscholar +1 more source
New Results Involving Riemann Zeta Function Using Its Distributional Representation
The relation of special functions with fractional integral transforms has a great influence on modern science and research. For example, an old special function, namely, the Mittag–Leffler function, became the queen of fractional calculus because its ...
Asifa Tassaddiq, Rekha Srivastava
doaj +1 more source
Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines [PDF]
For an arbitrary complex number $$a\ne 0$$ a ≠ 0 we consider the distribution of values of the Riemann zeta-function $$\zeta $$ ζ at the a -points of the function $$\Delta $$ Δ which appears in the functional equation $$\zeta (s)=\Delta (s)\zeta (1-s ...
J. Steuding, Ade Irma Suriajaya
semanticscholar +1 more source
Complete basis set extrapolation of electronic correlation energies using the Riemann zeta function. [PDF]
In this communication we demonstrate the effectiveness of the method of complete basis set (CBS) extrapolation of correlation energies based on the application of the Riemann zeta function.
M. Lesiuk, B. Jeziorski
semanticscholar +1 more source
Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line [PDF]
We prove the leading order of a conjecture by Fyodorov, Hiary, and Keating about the maximum of the Riemann zeta function on random intervals along the critical line.
L. Arguin+4 more
semanticscholar +1 more source
Precalculated arrays-based algorithms for the calculation of the Riemann zeta-function
In this paper, we continue the study of efficient algorithms for the computation of the Riemann zeta function on the complex plane. We introduce two precalculated arrays-based modifications of MB-method.
Lukas Kuzma+2 more
doaj +1 more source
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)=∑n=1∞(qn(s−1)/[n]s ...
Taekyun Kim
doaj +1 more source
Fungsi Zeta Riemann Genap Menggunakan Bilangan Bernoulli
In this article, we study about the value of Riemann Zeta Function for even numbers using Bernoulli number. First, we give some basic theory about Bernoulli number and Riemann Zeta function.
Ikhsan Maulidi+2 more
doaj +1 more source
Some Numerical Significance of the Riemann Zeta Function
In this paper, the Riemann analytic continuation formula (RACF) is derived from Euler’s quadratic equation. A nonlinear function and a polynomial function that were required in the derivation were also obtained.
Opeyemi O. Enoch, Lukman O. Salaudeen
doaj +1 more source
Questions around the nontrivial zeros of the Riemann zeta-function. Computations and classifications
We study the sequence of nontrivial zeros of the Riemann zeta-function with respect to sequences of zeros of other related functions, namely, the Hurwitz zeta-function and the derivative of Riemann's zeta-function.
Ramūnas Garunkštis, Joern Steuding
doaj +1 more source