Results 291 to 300 of about 763,502 (351)

Tumor‐Associated Sympathetic Nerves Promote the Progression of Epstein‐Barr Virus‐Positive Diffuse Large B‐Cell Lymphoma

open access: yesAdvanced Science, EarlyView.
Sympathetic nerve innervation promotes the progression of Epstein‐Barr virus‐positive diffuse large B‐cell lymphoma (EBV+ DLBCL) via β2‐adrenergic receptors. The discovery of enhanced nerve infiltration and β2AR expression reveals a novel mechanism and highlights the sympathetic–β2AR axis as a promising target for therapeutic intervention in EBV+ DLBCL.
Silan Huang   +10 more
wiley   +1 more source

The Nuclear Localization of ACLY Guards Early Embryo Development Through Recruiting P300 and HAT1 to Promote Histone Acetylation and Transcription

open access: yesAdvanced Science, EarlyView.
ACLY is vital for early embryo development. IGF‐1 activates AKT to phosphorylate ACLY, driving its nuclear localization and recruitment of HATs (P300/HAT1), boosting acetyl‐CoA production and histone acetylation for transcriptional activation. Conversely, ACLY deficiency (via knockdown, knockout, or AKT inhibition) reduces nuclear acetyl‐CoA, disrupts ...
Yerong Ma   +18 more
wiley   +1 more source

MYC Binding Near Transcriptional End Sites Regulates Basal Gene Expression, Read‐Through Transcription, and Intragenic Contacts

open access: yesAdvanced Science, EarlyView.
MYC is a transcription factor (TF) that binds DNA near transcriptional start sites (TSSs) and within enhancer elements. Here, unappreciated sites of MYC binding in the vicinity of transcriptional end sites (TESs) of many genes in multiple cell types in association with numerous other TFs are described previously.
Huabo Wang   +5 more
wiley   +1 more source

Engineering Electron Transfer Flux between Cytochrome P450 Enzyme and P450 Reductase to Enhance Serotonin Production in Escherichia Coli

open access: yesAdvanced Science, EarlyView.
The electron transfer flux in CPR‐P450 catalytic system is systematically engineered through: i) enhancing electron transfer rate by redesigning the putative electron transfer pathway of CPR; ii) improving electron‐receiving rate by evolving the heme domain of tryptophan‐5‐hydroxylase (T5H); iii) enlarging electron supply by fine‐tuning NADPH synthesis.
Wenzhao Xu   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy