Results 61 to 70 of about 288,835 (288)

PYCR1 inhibition in bone marrow stromal cells enhances bortezomib sensitivity in multiple myeloma cells by altering their metabolism

open access: yesMolecular Oncology, EarlyView.
This study investigated how PYCR1 inhibition in bone marrow stromal cells (BMSCs) indirectly affects multiple myeloma (MM) cell metabolism and viability. Culturing MM cells in conditioned medium from PYCR1‐silenced BMSCs impaired oxidative phosphorylation and increased sensitivity to bortezomib.
Inge Oudaert   +13 more
wiley   +1 more source

Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells

open access: yesCells, 2019
Periodontitis is a prevalent infectious disease worldwide, causing the damage of periodontal support tissues, which can eventually lead to tooth loss.
Jin Liu   +8 more
doaj   +1 more source

Inhibition of CDK9 enhances AML cell death induced by combined venetoclax and azacitidine

open access: yesMolecular Oncology, EarlyView.
The CDK9 inhibitor AZD4573 downregulates c‐MYC and MCL‐1 to induce death of cytarabine (AraC)‐resistant AML cells. This enhances VEN + AZA‐induced cell death significantly more than any combination of two of the three drugs in AraC‐resistant AML cells.
Shuangshuang Wu   +18 more
wiley   +1 more source

Applying biotechnology and bioengineering to pediatric lung disease: emerging paradigms and platforms

open access: yesFrontiers in Pediatrics, 2015
Pediatric lung diseases remain a costly worldwide health burden. For many children with end-stage lung disease, lung transplantation remains the only therapeutic option.
Kelley L Colvin, Michael E Yeager
doaj   +1 more source

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

Cytoplasmic p21 promotes stemness of colon cancer cells via activation of the NFκB pathway

open access: yesMolecular Oncology, EarlyView.
Cytoplasmic p21 promotes colorectal cancer stem cell (CSC) features by destabilizing the NFκB–IκB complex, activating NFκB signaling, and upregulating BCL‐xL and COX2. In contrast to nuclear p21, cytoplasmic p21 enhances spheroid formation and stemness transcription factor CD133.
Arnatchai Maiuthed   +10 more
wiley   +1 more source

Dual targeting of RET and SRC synergizes in RET fusion‐positive cancer cells

open access: yesMolecular Oncology, EarlyView.
Despite the strong activity of selective RET tyrosine kinase inhibitors (TKIs), resistance of RET fusion‐positive (RET+) lung cancer and thyroid cancer frequently occurs and is mainly driven by RET‐independent bypass mechanisms. Son et al. show that SRC TKIs significantly inhibit PAK and AKT survival signaling and enhance the efficacy of RET TKIs in ...
Juhyeon Son   +13 more
wiley   +1 more source

Cis‐regulatory and long noncoding RNA alterations in breast cancer – current insights, biomarker utility, and the critical need for functional validation

open access: yesMolecular Oncology, EarlyView.
The noncoding region of the genome plays a key role in regulating gene expression, and mutations within these regions are capable of altering it. Researchers have identified multiple functional noncoding mutations associated with increased cancer risk in the genome of breast cancer patients.
Arnau Cuy Saqués   +3 more
wiley   +1 more source

Recent Advances in Scaffolds for Guided Bone Regeneration

open access: yesBiomimetics
The rehabilitation of alveolar bone defects of moderate to severe size is often challenging. Currently, the therapeutic approaches used include, among others, the guided bone regeneration technique combined with various bone grafts.
Theodoros-Filippos Valamvanos   +4 more
doaj   +1 more source

Potential therapeutic targeting of BKCa channels in glioblastoma treatment

open access: yesMolecular Oncology, EarlyView.
This review summarizes current insights into the role of BKCa and mitoBKCa channels in glioblastoma biology, their potential classification as oncochannels, and the emerging pharmacological strategies targeting these channels, emphasizing the translational challenges in developing BKCa‐directed therapies for glioblastoma treatment.
Kamila Maliszewska‐Olejniczak   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy