Results 71 to 80 of about 840,881 (357)
This study examines how several molten high‐silicon electrical steels interact with both conventional and recycled MgO–C refractories. For this, various immersion experiments are conducted. In addition to infiltration, a number of mechanisms are identified and explained that control the corrosion of the refractory material.
Lukas Neubert +7 more
wiley +1 more source
Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy [PDF]
We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all (x, y and z) faces of bulk single crystals using scanning force microscopy. The experiments were carried out with hexagonally poled lithium niobate to
T. Jungk, Á. Hoffmann, E. Soergel
semanticscholar +1 more source
Herein, environmental scanning electron microscopy (ESEM) is discussed as a powerful extension of conventional SEM for life sciences. By combining high‐resolution imaging with variable pressure and humidity, ESEM allows the analysis of untreated biological materials, supports in situ monitoring of hydration‐driven changes, and advances the functional ...
Jendrian Riedel +6 more
wiley +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
Rheocasting versus Die Casting: An Insight into the Low‐Cycle Fatigue Behavior of AlSi7Mg0.6
The study compares rheocast lightweight components with high‐pressure die cast materials regarding microstructure and fatigue behavior. Rheocast process offers higher efficiency due to lower casting temperatures. Despite some microstructural differences, both processes show similar strengths (yield strength 125 MPa, tensile strength 240 MPa).
Julia Richter +4 more
wiley +1 more source
The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen ...
M Raspanti +4 more
doaj +3 more sources
Can Ti‐Based MXenes Serve as Solid Lubricants for Brake Applications? A Tribological Study
This study explores the first implementation of Ti‐based MXenes materials in brake pad friction composite material. The resulting composite material exhibits a 48% reduction in the wear rate; alongside significant improvements are observed for thermal and mechanical properties.
Eslam Mahmoud +7 more
wiley +1 more source
A combined atomic force microscope (AFM) and scanning electron microscope (SEM) experiment examining the first steps in limestone weathering and erosion is presented.
Joan J. Fornós +3 more
doaj +1 more source
Combining Electrochemical Scanning Tunneling Microscopy with Force Microscopy
All electrochemical and electrocatalytic processes occur at the boundary between an electrode and an electrolyte. Progress in the field of electrochemistry requires a detailed microscopic understanding of these complex solid-liquid interfaces, making this a captivating field for in situ surface-sensitive microscopic techniques, such as scanning probe ...
Andrea Auer +2 more
openaire +2 more sources
This study proposes a new methodology for producing metal matrix nanocomposites in the solid state. The process involves the plasma‐assisted thermochemical treatment of metallic alloy powders. As a proof‐of‐concept, TiN nanoparticles are synthesized directly on the surface of FeTi intermetallic powder particles, enabling the development of the ...
Deivison Daros Paim +4 more
wiley +1 more source

