Results 181 to 190 of about 219,209 (310)

MICROBIAL SECONDARY METABOLITES

open access: yesInternational Journal of Biology, Pharmacy and Allied Sciences, 2021
openaire   +1 more source

NAD+‐Dependent Enzyme SIRT3 Limits Intestinal Epithelial Cell Functions Through NAD+ Synthesis Pathway in Colorectal Cancer

open access: yesAdvanced Science, EarlyView.
Microbiota‐derived quinolinic acid is used as an alternative source of replenishing the intracellular NAD+ pool induced by SIRT3 deficiency to regulate intestinal epithelial cell and T cell function, which has implications for targeting intestinal epithelial cells as an approach to the treatment of immune‐associated diseases, including colorectal ...
Ruiying Niu   +12 more
wiley   +1 more source

Chitosan elicitation enhances biomass and secondary metabolite production in Carlina acaulis L. [PDF]

open access: yesSci Rep
Strzemski M   +7 more
europepmc   +1 more source

Image Fusion for Super‐Resolution Mass Spectrometry Imaging of Plant Tissue

open access: yesAdvanced Science, EarlyView.
A loss controlled residual network (LCRN) workflow is developed for super‐resolution fusion of plant mass spectrometry imaging data. LCRN uses a novel edge perceptual loss metric to preserve complex plant tissue morphology. LCRN achieves up to 20‐fold magnification while effectively combining chemical information from mass spectrometry with ...
Yuchen Zou   +3 more
wiley   +1 more source

Dipiperazine‐Phenyl Derivatives Based on Convergent Molecular Platforms Can Reverse Multidrug Resistance in Gram‐Negative Bacteria by Inhibiting Efflux and Permeabilizing Cell Membranes

open access: yesAdvanced Science, EarlyView.
By integrating a convergent molecular platform strategy, this study designed a novel dual‐target C5 to combat multidrug‐resistant Gram‐negative bacteria. C5 synergistically enhances antibiotic efficacy by inhibiting efflux pumps and increasing bacterial membrane permeability.
Jiale Dong   +11 more
wiley   +1 more source

Metabolic Reprogramming of T Cells by Dual UCP2 and IL‐17 Blockade Enhances Immunity Against Pancreatic Cancer

open access: yesAdvanced Science, EarlyView.
This study demonstrates that dual UCP2/IL‐17 blockade reprograms T‐cell metabolism to overcome PDAC immunosuppression. Genipin‐mediated UCP2 inhibition enhances CD8⁺ T‐cell IFN‐γ via IL‐12R/STAT4/mTOR signaling and mitochondrial OXPHOS. Combined IL‐17 depletion amplifies Tc1/Th1 responses, reduces MDSCs, and prolongs survival in PDAC models ...
Chuan‐Teng Liu   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy