Results 11 to 20 of about 2,447 (140)
The Characterizing Properties of (Signless) Laplacian Permanental Polynomials of Almost Complete Graphs [PDF]
Let G be a graph with n vertices, and let LG and QG denote the Laplacian matrix and signless Laplacian matrix, respectively. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic ...
Tingzeng Wu, Tian Zhou
doaj +3 more sources
(Generalized) Incidence and Laplacian-Like Energies
In this study, for graph Γ with r connected components (also for connected nonbipartite and connected bipartite graphs) and a real number ε≠0,1, we found generalized and improved bounds for the sum of ε-th powers of Laplacian and signless Laplacian ...
A. Dilek Maden, Mohammad Tariq Rahim
doaj +2 more sources
Distance (signless) Laplacian spectrum of dumbbell graphs [PDF]
In this paper, we determine the distance Laplacian and distance signless Laplacian spectrum of generalized wheel graphs and a new class of graphs called dumbbell graphs.
Sakthidevi Kaliyaperumal +1 more
doaj +2 more sources
Some Chemistry Indices of Clique-Inserted Graph of a Strongly Regular Graph
In this paper, we give the relation between the spectrum of strongly regular graph and its clique-inserted graph. The Laplacian spectrum and the signless Laplacian spectrum of clique-inserted graph of strongly regular graph are calculated.
Chun-Li Kan +3 more
doaj +2 more sources
Some upper bounds for the signless Laplacian spectral radius of digraphs [PDF]
Let $G=(V(G),E(G))$ be a digraph without loops and multiarcs, where $V(G)=\{v_1,v_2,$ $\ldots,v_n\}$ and $E(G)$ are the vertex set and the arc set of $G$, respectively. Let $d_i^{+}$ be the outdegree of the vertex $v_i$.
Weige Xi, Ligong Wang
doaj +2 more sources
Signless Laplacian Spectral Conditions for Hamiltonicity of Graphs [PDF]
We establish some signless Laplacian spectral radius conditions for a graph to be Hamiltonian or traceable or Hamilton-connected.
Guidong Yu +3 more
doaj +2 more sources
On Extremal Spectral Radii of Uniform Supertrees with Given Independence Number
A supertree is a connected and acyclic hypergraph. Denote by Tm,n,α the set of m‐uniform supertrees of order n with independent number α. Focusing on the spectral radius in Tm,n,α, this present completely determines the hypergraphs with maximum spectral radius among all the supertrees with n vertices and independence number α for [m − 1/mn] ≤ α ≤ n − 1,
Lei Zhang +2 more
wiley +1 more source
Two Kinds of Laplacian Spectra and Degree Kirchhoff Index of the Weighted Corona Networks
Recently, the study related to network has aroused wide attention of the scientific community. Many problems can be usefully represented by corona graphs or networks. Meanwhile, the weight is a vital factor in characterizing some properties of real networks.
Haiqin Liu, Yanling Shao, Azhar Hussain
wiley +1 more source
New Bounds for the Generalized Distance Spectral Radius/Energy of Graphs
Let G be a simple connected graph with vertex set V(G) = {v1, v2, …, vn} and dvi be the degree of the vertex vi. Let D(G) be the distance matrix and Tr(G) be the diagonal matrix of the vertex transmissions of G. The generalized distance matrix of G is defined as Dα(G) = αTr(G) + (1 − α)D(G), where 0 ≤ α ≤ 1. If λ1, λ2, …, λn are the eigenvalues of Dα(G)
Yuzheng Ma +3 more
wiley +1 more source
Spectral Sufficient Conditions on Pancyclic Graphs
A pancyclic graph of order n is a graph with cycles of all possible lengths from 3 to n. In fact, it is NP‐complete that deciding whether a graph is pancyclic. Because the spectrum of graphs is convenient to be calculated, in this study, we try to use the spectral theory of graphs to study this problem and give some sufficient conditions for a graph to
Guidong Yu +4 more
wiley +1 more source

