Results 41 to 50 of about 2,447 (140)

Central vertex join and central edge join of two graphs

open access: yesAIMS Mathematics, 2020
The central graph $C(G)$ of a graph $G$ is obtained by sub dividing each edge of $G$ exactly once and joining all the nonadjacent vertices in $G$. In this paper, we compute the adjacency, Laplacian and signless Laplacian spectra of central graph of a ...
Jahfar T K, Chithra A V
doaj   +1 more source

Bounds on the α‐Distance Energy and α‐Distance Estrada Index of Graphs

open access: yesDiscrete Dynamics in Nature and Society, Volume 2020, Issue 1, 2020., 2020
Let G be a simple undirected connected graph, then Dα(G) = αTr(G) + (1 − α)D(G) is called the α‐distance matrix of G, where α ∈ [0,1], D(G) is the distance matrix of G, and Tr(G) is the vertex transmission diagonal matrix of G. In this paper, we study some bounds on the α‐distance energy and α‐distance Estrada index of G.
Yang Yang   +3 more
wiley   +1 more source

On the construction of L-equienergetic graphs

open access: yesAKCE International Journal of Graphs and Combinatorics, 2015
For a graph G with n vertices and m edges, and having Laplacian spectrum μ1,μ2,…,μn and signless Laplacian spectrum μ1+,μ2+,…,μn+, the Laplacian energy and signless Laplacian energy of G are respectively, defined as LE(G)=∑i=1n|μi−2mn| and LE+(G)=∑i=1n ...
S. Pirzada, Hilal A. Ganie
doaj   +1 more source

Seidel Signless Laplacian Energy of Graphs [PDF]

open access: yesMathematics Interdisciplinary Research, 2017
Let S(G) be the Seidel matrix of a graph G of order n and let DS(G)=diag(n-1-2d1, n-1-2d2,..., n-1-2dn) be the diagonal matrix with d_i denoting the degree of a vertex v_i in G.
Harishchandra Ramane   +3 more
doaj   +1 more source

The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number

open access: yes, 2014
Let $G$ be a connected non-bipartite graph on $n$ vertices with domination number $\gamma \le \frac{n+1}{3}$. We investigate the least eigenvalue of the signless Laplacian of $G$, and present a lower bound for such eigenvalue in terms of the domination ...
Fan, Yi-Zheng, Tan, Ying-Ying
core   +1 more source

On the Adjacency, Laplacian, and Signless Laplacian Spectrum of Coalescence of Complete Graphs

open access: yesJournal of Mathematics, 2016
Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under ...
S. R. Jog, Raju Kotambari
doaj   +1 more source

Pointwise eigenvector estimates by landscape functions: Some variations on the Filoche–Mayboroda–van den Berg bound

open access: yesMathematische Nachrichten, Volume 297, Issue 5, Page 1749-1771, May 2024.
Abstract Landscape functions are a popular tool used to provide upper bounds for eigenvectors of Schrödinger operators on domains. We review some known results obtained in the last 10 years, unify several approaches used to achieve such bounds, and extend their scope to a large class of linear and nonlinear operators. We also use landscape functions to
Delio Mugnolo
wiley   +1 more source

Locating Eigenvalues of a Symmetric Matrix whose Graph is Unicyclic

open access: yesTrends in Computational and Applied Mathematics, 2021
We present a linear-time algorithm that computes in a given real interval the number of eigenvalues of any symmetric matrix whose underlying graph is unicyclic.
R. O. Braga   +2 more
doaj   +1 more source

Sharp Bounds for the Signless Laplacian Spectral Radius in Terms of Clique Number [PDF]

open access: yes, 2012
In this paper, we present a sharp upper and lower bounds for the signless Laplacian spectral radius of graphs in terms of clique number. Moreover, the extremal graphs which attain the upper and lower bounds are characterized.
Abraham Berman   +5 more
core  

Spectra of the neighbourhood corona of two graphs

open access: yes, 2013
Given simple graphs $G_1$ and $G_2$, the neighbourhood corona of $G_1$ and $G_2$, denoted $G_1\star G_2$, is the graph obtained by taking one copy of $G_1$ and $|V(G_1)|$ copies of $G_2$, and joining the neighbours of the $i$th vertex of $G_1$ to every ...
Liu, Xiaogang, Zhou, Sanming
core   +1 more source

Home - About - Disclaimer - Privacy