Results 51 to 60 of about 2,447 (140)

Bicyclic graphs with exactly two main signless Laplacian eigenvalues [PDF]

open access: yes, 2013
A signless Laplacian eigenvalue of a graph $G$ is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero.
Deng, Hanyuan, Huang, He
core  

Distance Spectra of Some Double Join Operations of Graphs

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2024, Issue 1, 2024.
In literature, several types of join operations of two graphs based on subdivision graph, Q‐graph, R‐graph, and total graph have been introduced, and their spectral properties have been studied. In this paper, we introduce a new double join operation based on (H1, H2)‐merged subdivision graph.
B. J. Manjunatha   +4 more
wiley   +1 more source

On the sum of signless Laplacian spectra of graphs

open access: yesKarpatsʹkì Matematičnì Publìkacìï, 2019
For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is ...
S. Pirzada, H.A. Ganie, A.M. Alghamdi
doaj   +1 more source

The Largest Laplacian and Signless Laplacian H-Eigenvalues of a Uniform Hypergraph [PDF]

open access: yes, 2013
In this paper, we show that the largest Laplacian H-eigenvalue of a $k$-uniform nontrivial hypergraph is strictly larger than the maximum degree when $k$ is even. A tight lower bound for this eigenvalue is given.
Hu, Shenglong, Qi, Liqun, Xie, Jinshan
core  

The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs

open access: yes, 2015
Let $\mathcal{A(}G\mathcal{)},\mathcal{L(}G\mathcal{)}$ and $\mathcal{Q(}% G\mathcal{)}$ be the adjacency tensor, Laplacian tensor and signless Laplacian tensor of uniform hypergraph $G$, respectively.
Qi, Liqun, Shao, Jiayu, Yuan, Xiying
core   +1 more source

Resistance Distance and Kirchhoff Index for a Class of Graphs

open access: yesMathematical Problems in Engineering, Volume 2018, Issue 1, 2018., 2018
Let G[F, Vk, Hv] be the graph with k pockets, where F is a simple graph of order n ≥ 1, Vk = {v1, v2, …, vk} is a subset of the vertex set of F, Hv is a simple graph of order m ≥ 2, and v is a specified vertex of Hv. Also let G[F, Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek = {e1, e2, …ek} is a subset of the ...
WanJun Yin   +3 more
wiley   +1 more source

Spectra of Graphs Resulting from Various Graph Operations and Products: a Survey

open access: yesSpecial Matrices, 2018
Let G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and ...
Barik S., Kalita D., Pati S., Sahoo G.
doaj   +1 more source

-borderenergetic graphs

open access: yesAKCE International Journal of Graphs and Combinatorics, 2020
A graph is said to be borderenergetic (-borderenergetic, respectively) if its energy (Laplacian energy, respectively) equals the energy (Laplacian energy, respectively) of the complete graph .
Qingyun Tao, Yaoping Hou
doaj   +1 more source

Perfect State Transfer in Laplacian Quantum Walk [PDF]

open access: yes, 2014
For a graph $G$ and a related symmetric matrix $M$, the continuous-time quantum walk on $G$ relative to $M$ is defined as the unitary matrix $U(t) = \exp(-itM)$, where $t$ varies over the reals.
Alvir, R.   +6 more
core  

The extremal spectral radii of $k$-uniform supertrees

open access: yes, 2014
In this paper, we study some extremal problems of three kinds of spectral radii of $k$-uniform hypergraphs (the adjacency spectral radius, the signless Laplacian spectral radius and the incidence $Q$-spectral radius). We call a connected and acyclic $k$
Li, Honghai, Qi, Liqun, Shao, Jiayu
core   +1 more source

Home - About - Disclaimer - Privacy