Results 261 to 270 of about 290,074 (337)

Ratoon Season Rice Reduces Methane Emissions by Limiting Acetic Acid Transport to the Rhizosphere and Inhibiting Methanogens

open access: yesAdvanced Science, EarlyView.
This study finds that the interaction between ABA‐OsCIPK2‐OsSWEET1A reduces the allocation of methane producing bacteria carbon source (acetic acid) content to the rhizosphere soil of ratoon season rice, thereby reducing methane emissions. Abstract Rice paddies are a major, persistent source of atmospheric methane (CH4), emission rates depend on the ...
Jingnan Zou   +14 more
wiley   +1 more source

HPD is an m6A Methyltransferase that Protects Colorectal Cancer Cells from Ferroptotic Cell Death by m6A Methylating SLC7A11/GPX4

open access: yesAdvanced Science, EarlyView.
This study reveals that the tyrosine metabolic enzyme HPD functions as a previously uncharacterized, METTL3‐independent m6A methyltransferase. It promotes colorectal tumor progression by coordinately regulating the SLC7A11/GPX4 axis to suppress ferroptosis.
Jiyan Wang   +17 more
wiley   +1 more source

Ecosystem‐Centered Robot Design: Toward Ecoresorbable Sustainability Robots (ESRs)

open access: yesAdvanced Science, EarlyView.
Robots exploring natural ecosystems can support monitoring and conservation, but must adopt ecosystem‐centered design to avoid pollution, waste, and damage. This review proposes guidelines for co‐designing ecoresorbable sustainability robots (ESRs), uniting materials, robotics, and ecological contexts in a single framework.
Tülin Yılmaz Nayır   +4 more
wiley   +1 more source

Discovery of a Novel and Potent Kir4.1 Inhibitor as a Safe and Rapid‐Onset Antidepressant Agent in Mice

open access: yesAdvanced Science, EarlyView.
The preferred derivative JX3212 demonstrates strong inhibitory activity against Kir4.1 with favorable druggability and shows significant antidepressant efficacy in vivo. Abstract Major depressive disorder is a serious psychiatric disorder for which novel and fast‐acting antidepressants are required.
Sisi Wang   +15 more
wiley   +1 more source

Cinnamic‐Hydroxamic‐Acid Derivatives Exhibit Antibiotic, Anti‐Biofilm, and Supercoiling Relaxation Properties by Targeting Bacterial Nucleoid‐Associated Protein HU

open access: yesAdvanced Science, EarlyView.
Cinnamic‐hydroxamic‐acid derivatives (CHADs) are identified as novel inhibitors of the bacterial nucleoid‐associated protein HU, exhibiting potent antibacterial, anti‐biofilm (both inhibition and eradication), and DNA relaxation (anti‐supercoiling) activities. Moreover, CHADs demonstrate strong synergistic effects with multiple antibiotics.
Huan Chen   +22 more
wiley   +1 more source

Home - About - Disclaimer - Privacy