Results 271 to 280 of about 290,074 (337)

TBK1 Induces the Formation of Optineurin Filaments That Condensate with Polyubiquitin and LC3 for Cargo Sequestration

open access: yesAdvanced Science, EarlyView.
Phosphorylation of Optineurin by TBK1 induces the formation of filaments that condensate upon binding to linear polyubiquitin. Membrane‐anchored LC3 partitions into these condensates, suggesting that phase separation of filamentous Optineurin with ubiquitylated cargo promotes the sequestration of cargo and its subsequent alignment with LC3‐positive ...
Maria G. Herrera   +10 more
wiley   +1 more source

Chromatography of anticancer drugs [PDF]

open access: yes, 2013
Cserháti, Tibor, Szőgyi, Mária
core  

Balanced Expression of the Diiron Oxygenase BioE Is Essential for Biotin Homeostasis in Elizabethkingia meningoseptica

open access: yesAdvanced Science, EarlyView.
BioE is a new diiron oxygenase that catalyzes the conversion of long‐chain acyl groups into pimeloyl thioester, initiating biotin synthesis. The overexpression of EmBioE disrupts lipid metabolic homeostasis, requiring repressor BioL to maintain a balance between long‐chain fatty acids and biotin synthesis.
Meng Zhang   +9 more
wiley   +1 more source

A Hydrodynamic Bioreactor for High‐Yield Production of Extracellular Vesicles from Stem Cell Spheroids with Defined Cargo Profiling

open access: yesAdvanced Science, EarlyView.
This study harnesses hydrodynamic flows to generate, confine and stimulate stem cell spheroids, enabling the large‐scale production of extracellular vesicles (EVs). This innovative method not only streamlines spheroid formation and subsequent EV release in a single, integrated process, but also ensures the generation of EVs with enhanced biological ...
Solène Lenoir   +7 more
wiley   +1 more source

ACSL5 Regulates Glucose Metabolism and Chemotherapy Sensitivity in Colorectal Cancer Cells under Glutamine Deficiency

open access: yesAdvanced Science, EarlyView.
Glutamine deprivation triggers ACSL5 upregulation in tumor cells, sustaining their viability via dual metabolic rewiring programs. ACSL5 enhances glycolysis by relieving p53's inhibition of PGAM1 while also sustaining mitochondrial respiration and TCA cycle flux through promoting IDH2 dimerization.
Shuai Tian   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy