Results 181 to 190 of about 171,528 (311)

Quantifying Tactile Perception of Fabrics Using Both Frictional and Acoustic Methods. [PDF]

open access: yesTribol Lett
Kyriazis L   +4 more
europepmc   +1 more source

A Microfiber‐Reinforced Janus Hydrogel E‐Skin With Recyclable Feature for Multimodal Sensing and Gender‐Specific Physiological Monitoring

open access: yesAdvanced Science, EarlyView.
Hydrogel‐based wearable electronics hold great promise for physiological monitoring in privacy‐sensitive regions. In this study, a polyurethane (PU) microfiber‐reinforced gelatin hydrogel e‐skin is developed, boasting multiple advantages such as ultra‐thinness, high toughness, and long‐term skin conformability.
Yarong Ding   +11 more
wiley   +1 more source

Intelligent Soft Opto‐Magnetic Robot for Minimally Invasive Interventional Therapy

open access: yesAdvanced Science, EarlyView.
An intelligent soft opto‐magnetic (iSOM) robot is developed that integrates remote magnetic actuation, skin‐mimic tactile perception, and photothermal ablation in a near‐millimeter‐scale design. It enables precise intraluminal navigation and localized ablation while providing real‐time optical feedback to support safe and accurate minimally invasive ...
Jingjing Guo   +13 more
wiley   +1 more source

Deformation Driven Suction Cups: A Mechanics‐Based Approach to Wearable Electronics

open access: yesAdvanced Science, EarlyView.
Deformation‐driven suction cups enable robust, reversible adhesion of wearable electronics to human skin spanning wide mechanical compliance, without adhesives or tight straps. By integrating mechanics modeling, experiments, and contact mechanics theory, this work reveals how cup geometry, substrate compliance, and interfacial adhesion govern suction ...
Seola Lee   +10 more
wiley   +1 more source

3D‐Printed Ion‐Conductive Hydrogels with Tunable Mechanical–Electrical Properties for Multimodal Sign Language Recognition

open access: yesAdvanced Science, EarlyView.
This work successfully fabricated ion‐conductive hydrogels with low hysteresis and high conductivity using 3D printing technology. By adjusting the component ratios, the properties of the hydrogels can be tuned to meet diverse sensing requirements. Finally, a multimodal sensing sign language recognition system was constructed based on this hydrogel ...
Quan Hu   +9 more
wiley   +1 more source

Wavy‐Interlocked Stretchable Triboelectric Nanogenerators Enhanced by Liquid Metal Microflowers for Self‐Powered Wearable Motion Monitoring

open access: yesAdvanced Science, EarlyView.
Schematic showing a stretchable triboelectric nanogenerator based on interlocked wavy architectures that uses EGaIn microflower‐embedded PVDF‐TrFE and Nylon‐6 nanofiber membranes. The multi‐petaled, electron‐rich EGaIn microflowers enhance interfacial polarization and capacitance, while the interlocked wavy architecture enlarges the effective contact ...
Qianqian Xu   +12 more
wiley   +1 more source

Soft, Flexible, and Stretchable Platforms for Tissue‐Interfaced Bioelectronics

open access: yesAdvanced Science, EarlyView.
Bio‐integrated electronics provide mechanically compliant and stable interfaces with soft biological tissues. Representative applications include neural interfaces, wet‐organadhesive electronics, and skin‐interfaced devices. E represents Young´s modulus and ε represents strain.
Kento Yamagishi   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy