Results 41 to 50 of about 3,823 (149)
Structural Control of Photoconductivity in a Flexible Titanium‐Organic Framework
The concept of flexibility is extended to titanium frameworks and use it to gain control over charge transport. MUV‐35 is a flexible doubly interpenetrated framework that can shrink spontaneously its volume by ≈40% to afford a photoconductive, porous state that is thermodynamically favored by non‐covalent interactions. Abstract The soft nature of Metal‐
Clara Chinchilla‐Garzón +6 more
wiley +1 more source
This review describes recent developments in the design and synthesis of metal–organic frameworks (MOF)/textile composites for the detoxification of chemical warfare agent and simulants with extensive discussion on the advantages and disadvantages of different methods.
Zhihua Cheng +4 more
wiley +1 more source
Reversible protonic ceramic electrochemical cells (R‐PCECs) face challenges from sluggish and unstable oxygen reduction and evolution reactions in the air electrode. This review discusses recent progress in triple‐conducting air electrodes, emphasizing mechanisms, performance factors, and design strategies, offering guidance for creating efficient and ...
Xi Chen +8 more
wiley +1 more source
An overview is provided of the mechanochemistry of metal‐organic frameworks (MOFs) and covalent‐organic frameworks (COFs), highlighting opportunities and strategies for discovery, synthesis and reactivity studies of these materials. Mechanistic studies and comparisons to the mechanochemistry of organic solids are outlined, showcasing how advances in ...
Joseph M. Marrett +3 more
wiley +1 more source
Carbon‐based piezoelectric materials are systematically categorized based on their structural and functional properties. The mechanisms of stress‐induced charge transfer are elucidated, and their applications are explored across three key domains: piezoelectric catalysis for energy conversion and environmental remediation, piezoelectric biomedical ...
Mude Zhu +3 more
wiley +1 more source
Harnessing Photo‐Energy Conversion in Nanomaterials for Precision Theranostics
Harnessing photo‐energy conversion in nanomaterials enables precision theranostics through light‐driven mechanisms such as photoluminescence, photothermal, photoelectric, photoacoustic, photo‐triggered surface‐enhanced Raman scattering (SERS), and photodynamic processes. This review explores six fundamental principles of photo‐energy conversion, recent
Jingyu Shi +4 more
wiley +1 more source
Designing Physical Unclonable Functions From Optically Active Materials
Assigning unforgeable “fingerprints” to manufactured goods is a key strategy to fight global counterfeiting. Optical physical unclonable functions (PUFs) are chemically generated random patterns of optically active materials serving as unique authenticators.
Maxime Klausen +2 more
wiley +1 more source
Recent Advances in Heterogeneous Frustrated Lewis Pair: Synthesis, Characterization, and Catalysis
This review provides a concise analysis of heterogeneous frustrated Lewis pair (FLP) chemistry, focusing on their synthesis, characterization, and application in small‐molecule activation. It highlights current challenges in developing solid FLP systems and explores promising advancements through emerging technologies, offering critical insights into ...
Jiasi Li +2 more
wiley +1 more source
Protonic ceramic electrolysis cells (PCECs) are a promising intermediate‐temperature hydrogen production technology, leveraging high proton conductivity in electrolytes yet constrained by insufficient catalytic activity and interfacial instability in fuel/air electrodes. This review systematically categorizes advanced electrode materials and critically
Zhipeng Liu +6 more
wiley +1 more source
Tunable and Persistent Macroscopic Polarization in Nominally Centrosymmetric Defective Oxides
This work introduces an approach to defect‐mediated symmetry breaking and built‐in polarization in nominally centrosymmetric defective oxides, Gd‐doped CeO2‐δ films, by controlling macroscopic charge asymmetry. Electric field‐driven asymmetric redistribution of oxygen vacancies induces a switchable, stable polarization, leading to a notable, persistent
Dae‐Sung Park +10 more
wiley +1 more source

