Results 81 to 90 of about 13,252,850 (343)

A glassy contribution to the heat capacity of hcp $^4$He solids

open access: yes, 2010
We model the low-temperature specific heat of solid $^4$He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature ...
A. Driessen   +60 more
core   +1 more source

Specific Heat Capacity of Wood

open access: yes, 2014
Specific heat capacity is defined as the amount of heat that a kilogram of a given substance is required to absorb in order to increase its temperature by one degree.
Kristijan Radmanović   +2 more
semanticscholar   +1 more source

Organ‐specific redox imbalances in spinal muscular atrophy mice are partially rescued by SMN antisense oligonucleotides

open access: yesFEBS Letters, EarlyView.
We identified a systemic, progressive loss of protein S‐glutathionylation—detected by nonreducing western blotting—alongside dysregulation of glutathione‐cycle enzymes in both neuronal and peripheral tissues of Taiwanese SMA mice. These alterations were partially rescued by SMN antisense oligonucleotide therapy, revealing persistent redox imbalance as ...
Sofia Vrettou, Brunhilde Wirth
wiley   +1 more source

Fluctuation Study of the Specific Heat of MgB2

open access: yes, 2002
The specific heat of polycrystalline Mg$^{11}$B$_{2}$ has been measured with high resolution ac calorimetry from 5 to 45 K at constant magnetic fields.
A. J. Bray   +32 more
core   +1 more source

β‐TrCP overexpression enhances cisplatin sensitivity by depleting BRCA1

open access: yesMolecular Oncology, EarlyView.
Low levels of β‐TrCP (Panel A) allow the accumulation of BRCA1 and CtIP, which facilitate the repair of cisplatin‐induced DNA damage via homologous recombination (HR) and promote tumor cell survival. In contrast, high β‐TrCP expression (Panel B) leads to BRCA1 and CtIP degradation, impairing HR repair, resulting in persistent DNA damage and apoptosis ...
Rocío Jiménez‐Guerrero   +8 more
wiley   +1 more source

Low temperature specific heat of the heavy fermion superconductor PrOs$_4$Sb$_{12}$

open access: yes, 2002
We report the magnetic field dependence of the low temperature specific heat of single crystals of the first Pr-based heavy fermion superconductor PrOs$_4$Sb$_{12}$.
A. Faißt   +9 more
core   +1 more source

Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance

open access: yesFrontiers in Plant Science, 2017
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries.
K. Sita   +11 more
semanticscholar   +1 more source

PARP inhibitors elicit distinct transcriptional programs in homologous recombination competent castration‐resistant prostate cancer

open access: yesMolecular Oncology, EarlyView.
PARP inhibitors are used to treat a small subset of prostate cancer patients. These studies reveal that PARP1 activity and expression are different between European American and African American prostate cancer tissue samples. Additionally, different PARP inhibitors cause unique and overlapping transcriptional changes, notably, p53 pathway upregulation.
Moriah L. Cunningham   +21 more
wiley   +1 more source

Specific heat in the integer quantum Hall effect: An exact diagonalization approach

open access: yes, 1997
We have studied the integer quantum Hall effect at finite temperatures by diagonalizing a single body tight binding model Hamiltonian including Aharonov-Bohm phase. We have studied the energy dependence of the specific heat and the Hall conductivity at a
Abraham   +11 more
core   +1 more source

Large-$q$ expansion of the specific heat for the two-dimensional $q$-state Potts model [PDF]

open access: yes, 1998
We have calculated the large-$q$ expansion for the specific heat at the phase transition point in the two-dimensional $q$-state Potts model to the 23rd order in $1/\sqrt{q}$ using the finite lattice method.
A. J. Guttmann   +24 more
core   +2 more sources

Home - About - Disclaimer - Privacy