Results 191 to 200 of about 395,684 (337)

The DEAH-box splicing factor Prp16 unwinds RNA duplexes in vitro [PDF]

open access: bronze, 1998
Yan Wang   +2 more
openalex   +1 more source

Dynamics of the Mammalian Placental Metabolome in Placentogenesis and Embryonic Development

open access: yesAdvanced Science, EarlyView.
This study identifies three metabolic stages (E8.5, E9.5–10.5, E11.5–14.5) and two transition periods (E8.5–9.5, E10.5–11.5) in mouse placental development. NAD(H) emerges as a key dynamic metabolite that enhances embryonic growth through accelerated segmentation and increased proliferation of mouse embryonic stem cell (mESC)‐induced presomitic ...
Gang Chen   +11 more
wiley   +1 more source

Ribosome Homeostasis Regulated by SETD2 Preserves Intestinal Epithelial Barrier

open access: yesAdvanced Science, EarlyView.
SETD2 ablation causes dysregulation and recruitment defects of ribosome biogenesis factors, resulting in translational disorders of barrier maintenance genes, thereby compromising the intestinal barrier. These findings unveil a previously unappreciated role of ribosome biogenesis and translational regulation in preserving the intestinal epithelial ...
Hanyu Rao   +11 more
wiley   +1 more source

Widespread naturally variable human exons aid genetic interpretation. [PDF]

open access: yesNat Commun
Jacobs HN   +7 more
europepmc   +1 more source

P-coumaric acid regulates exon 12 splicing of the ATP7B gene by modulating hnRNP A1 protein expressions

open access: diamond
Ying‐Ju Lin   +10 more
openalex   +2 more sources

HPD is an m6A Methyltransferase that Protects Colorectal Cancer Cells from Ferroptotic Cell Death by m6A Methylating SLC7A11/GPX4

open access: yesAdvanced Science, EarlyView.
This study reveals that the tyrosine metabolic enzyme HPD functions as a previously uncharacterized, METTL3‐independent m6A methyltransferase. It promotes colorectal tumor progression by coordinately regulating the SLC7A11/GPX4 axis to suppress ferroptosis.
Jiyan Wang   +17 more
wiley   +1 more source

Bone Dysplasia as a Key Feature in Three Patients with a Novel Congenital Disorder of Glycosylation (CDG) Type II Due to a Deep Intronic Splice Mutation in TMEM165

open access: green, 2012
Renate Zeevaert   +7 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy