Results 21 to 30 of about 851,309 (264)

Comparing self‐reported race and genetic ancestry for identifying potential differentially methylated sites in endometrial cancer: insights from African ancestry proportions using machine learning models

open access: yesMolecular Oncology, EarlyView.
Integrating ancestry, differential methylation analysis, and machine learning, we identified robust epigenetic signature genes (ESGs) and Core‐ESGs in Black and White women with endometrial cancer. Core‐ESGs (namely APOBEC1 and PLEKHG5) methylation levels were significantly associated with survival, with tumors from high African ancestry (THA) showing ...
Huma Asif, J. Julie Kim
wiley   +1 more source

Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets [PDF]

open access: yes, 1997
This paper introduces new algorithms and data structures for quick counting for machine learning datasets. We focus on the counting task of constructing contingency tables, but our approach is also applicable to counting the number of records in a ...
Lee, M. S., Moore, A.
core   +3 more sources

Machine Learning in Official Statistics

open access: yes, 2018
In the first half of 2018, the Federal Statistical Office of Germany (Destatis) carried out a "Proof of Concept Machine Learning" as part of its Digital Agenda. A major component of this was surveys on the use of machine learning methods in official statistics, which were conducted at selected national and international statistical institutions and ...
Beck, Martin   +2 more
openaire   +2 more sources

Online Learning for Statistical Machine Translation [PDF]

open access: yesComputational Linguistics, 2016
We present online learning techniques for statistical machine translation (SMT). The availability of large training data sets that grow constantly over time is becoming more and more frequent in the field of SMT—for example, in the context of translation agencies or the daily translation of government proceedings.
openaire   +3 more sources

A large‐scale retrospective study in metastatic breast cancer patients using circulating tumour DNA and machine learning to predict treatment outcome and progression‐free survival

open access: yesMolecular Oncology, EarlyView.
There is an unmet need in metastatic breast cancer patients to monitor therapy response in real time. In this study, we show how a noninvasive and affordable strategy based on sequencing of plasma samples with longitudinal tracking of tumour fraction paired with a statistical model provides valuable information on treatment response in advance of the ...
Emma J. Beddowes   +20 more
wiley   +1 more source

Return of Frustratingly Easy Domain Adaptation

open access: yes, 2015
Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning ...
Feng, Jiashi, Saenko, Kate, Sun, Baochen
core   +1 more source

Machine learning, statistical learning and the future of biological research in psychiatry [PDF]

open access: yesPsychological Medicine, 2016
Psychiatric research has entered the age of ‘Big Data’. Datasets now routinely involve thousands of heterogeneous variables, including clinical, neuroimaging, genomic, proteomic, transcriptomic and other ‘omic’ measures. The analysis of these datasets is challenging, especially when the number of measurements exceeds the number of individuals, and may ...
Iniesta, R.; Stahl, D.; McGuffin, P.
openaire   +6 more sources

Data‐driven discovery of gene expression markers distinguishing pediatric acute lymphoblastic leukemia subtypes

open access: yesMolecular Oncology, EarlyView.
This study investigates gene expression differences between two major pediatric acute lymphoblastic leukemia (ALL) subtypes, B‐cell precursor ALL, and T‐cell ALL, using a data‐driven approach consisting of biostatistics and machine learning methods. Following analysis of a discovery dataset, we find a set of 14 expression markers differentiating the ...
Mona Nourbakhsh   +8 more
wiley   +1 more source

Optimaztion of Fantasy Basketball Lineups via Machine Learning [PDF]

open access: yes, 2019
Machine learning is providing a way to glean never before known insights from the data that gets recorded every day. This paper examines the application of machine learning to the novel field of Daily Fantasy Basketball.
Earl, James
core   +1 more source

Circulating tumor DNA monitoring and blood tumor mutational burden in patients with metastatic solid tumors treated with atezolizumab

open access: yesMolecular Oncology, EarlyView.
In patients treated with atezolizumab as a part of the MyPathway (NCT02091141) trial, pre‐treatment ctDNA tumor fraction at high levels was associated with poor outcomes (radiographic response, progression‐free survival, and overall survival) but better sensitivity for blood tumor mutational burden (bTMB).
Charles Swanton   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy