Results 81 to 90 of about 635,008 (168)
Characterization and Inverse Design of Stochastic Mechanical Metamaterials Using Neural Operators
This study presents a DeepONet‐based machine learning framework for designing stochastic mechanical metamaterials with tailored nonlinear mechanical properties. By leveraging sparse but high‐quality experimental data from in situ micro‐mechanical tests, high predictive accuracy and enable efficient inverse design are achieved.
Hanxun Jin+7 more
wiley +1 more source
Mechanical Resonant Sensing of Spin Texture Dynamics in a 2D Antiferromagnet
Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions.
S M Enamul Hoque Yousuf+10 more
wiley +1 more source
Controlled Formation of Skyrmion Bags
This work demonstrates stabilization of complex magnetic skyrmion bags in ferromagnetic thin films through precisely engineered anisotropy defects using ion irradiation. The researchers achieve controlled field‐ and laser‐induced generation of skyrmionia, target skyrmions, and higher‐order skyrmion bags at room temperature. This reliable platform opens
Lisa‐Marie Kern+20 more
wiley +1 more source
Neuromorphic Light‐Responsive Organic Matter for in Materia Reservoir Computing
In this work we show that light‐responsive adaptive organic matter can store and process information at the matter level, and emulate neuromorphic functionalities such as short term memory, long term memory and visual memory. Besides demonstrating that material dynamics can be exploited for spatio‐temporal event detection and motion perception, we show
Federico Ferrarese Lupi+5 more
wiley +1 more source
An LLM‐based multi‐agent network screens academic literature to propose multiple environmentally friendly aqueous deep eutectic electrolytes for zinc‐ion batteries. Experiments identify an optimal composition of Zn(BF4)2·xH2O and ethylene carbonate, which shows high conductivity and cycling stability.
Matthew J. Robson+4 more
wiley +1 more source
Adjusting Cell‐Surface Interactions Through a Covalent Immobilization of Biomolecules
This review presents an overview of current and emerging immobilization techniques coupled with an in‐depth investigation of the underlying mechanisms governing the activity and stability of covalently immobilized biomolecules. The aim of this study is to serve as a guide for the development of long‐lasting biomedical coatings with versatile biological
Sara Shakibania+2 more
wiley +1 more source
Organic Ferroelectric Synaptic Transistors for Neural Image Recognition Networks
All organic transistors, where both the dielectric and semiconducting layers are polymeric, are developed as electrical synaptic devices. Two copolymers of PVDF as the dielectric layer with large differences in their saturation polarizability and memory window are chosen.
Evan Restuccia+2 more
wiley +1 more source
Interfacial Yield Stress Response in Synthetic Mucin Solutions
The solution rheology of novel synthetic mucins mimicking natural mucin domains is studied. Like many natural mucin solutions, apparent solid‐like rheology is seen. However, no bulk structural features are found to explain it. Interfacial rheology and robust modelling reveal that this arises from molecular associations at the air–water interface ...
Sumit Sunil Kumar+7 more
wiley +1 more source
Photoactive Monolayer MoS2 for Spiking Neural Networks Enabled Machine Vision Applications
Molybdenum disulfide (MoS2) optoelectronic devices are implemented as Leaky Integrate‐and‐Fire (LIF) neurons in spiking neural networks (SNNs), where light‐induced photocurrent dynamics represent potentiation (τd) and depression (τd), emulating neuronal membrane potential.
Thiha Aung+5 more
wiley +1 more source
Utilizing a novel (Ni81Fe19/Ti)4/Cu/(Ni81Fe19/Ti)4 thin‐film multilayer with low coercive field, low damping and a superior GMI ratio, a compact, low‐noise unbiased FMR‐driven integrated GMI sensor with a superior magnetic noise performance of ≈100 pT/√Hz is first demonstrated, owing to reduced phase noise from well‐defined aligned magnetic domains and
Bin Luo+8 more
wiley +1 more source