Results 81 to 90 of about 2,417,663 (337)

YAP1::TFE3 mediates endothelial‐to‐mesenchymal plasticity in epithelioid hemangioendothelioma

open access: yesMolecular Oncology, EarlyView.
The YAP1::TFE3 fusion protein drives endothelial‐to‐mesenchymal transition (EndMT) plasticity, resulting in the loss of endothelial characteristics and gain of mesenchymal‐like properties, including resistance to anoikis, increased migratory capacity, and loss of contact growth inhibition in endothelial cells.
Ant Murphy   +9 more
wiley   +1 more source

Breeding for resistance to insect-transmitted viruses in barley – an emerging challenge due to global warming

open access: yesJournal für Kulturpflanzen, 2009
Due to global warming longer periods of higher temperature in autumn and winter are expected which may result in an increasing importance of insect-transmitted viruses.
Antje Habekuß   +3 more
doaj   +1 more source

Pegylated arginine deiminase synergistically increases the cytotoxicity of gemcitabine in human pancreatic cancer. [PDF]

open access: yes, 2014
BackgroundPancreatic ductal adenocarcinoma has proven to be one of the most chemo-resistant among all solid organ malignancies. Several mechanisms of resistance have been described, though few reports of strategies to overcome this chemo-resistance have ...
Bold, Richard J   +3 more
core   +2 more sources

Emerging role of ARHGAP29 in melanoma cell phenotype switching

open access: yesMolecular Oncology, EarlyView.
This study gives first insights into the role of ARHGAP29 in malignant melanoma. ARHGAP29 was revealed to be connected to tumor cell plasticity, promoting a mesenchymal‐like, invasive phenotype and driving tumor progression. Further, it modulates cell spreading by influencing RhoA/ROCK signaling and affects SMAD2 activity. Rho GTPase‐activating protein
Beatrice Charlotte Tröster   +3 more
wiley   +1 more source

Functional Characterization of Ammonium Transporter LjAMT2;4 During Lotus japonicus Symbiosis with Rhizobia and Arbuscular Mycorrhizal Fungi

open access: yesJournal of Fungi
Arbuscular mycorrhizal fungi (AMF) and rhizobia are important symbiotic microorganisms in soil, which can symbiose with legumes to form mycorrhizal symbionts and nodules, respectively.
Kailing Xie   +6 more
doaj   +1 more source

PYCR1 inhibition in bone marrow stromal cells enhances bortezomib sensitivity in multiple myeloma cells by altering their metabolism

open access: yesMolecular Oncology, EarlyView.
This study investigated how PYCR1 inhibition in bone marrow stromal cells (BMSCs) indirectly affects multiple myeloma (MM) cell metabolism and viability. Culturing MM cells in conditioned medium from PYCR1‐silenced BMSCs impaired oxidative phosphorylation and increased sensitivity to bortezomib.
Inge Oudaert   +13 more
wiley   +1 more source

Genome-Wide Identification, Characterization, and Expression Profile of SWEETs Gene Family in Grapevine (Vitis vinifera L.)

open access: yesHorticulturae
SWEET (Sugars Will Eventually Be Exported Transporter) proteins, identified recently as a novel class of sugar transporters, play pivotal roles in the transport and distribution of photosynthetic products in plants.
Linjing Zhong   +10 more
doaj   +1 more source

Inhibition of CDK9 enhances AML cell death induced by combined venetoclax and azacitidine

open access: yesMolecular Oncology, EarlyView.
The CDK9 inhibitor AZD4573 downregulates c‐MYC and MCL‐1 to induce death of cytarabine (AraC)‐resistant AML cells. This enhances VEN + AZA‐induced cell death significantly more than any combination of two of the three drugs in AraC‐resistant AML cells.
Shuangshuang Wu   +18 more
wiley   +1 more source

ZmHPAT2 Regulates Maize Growth and Development and Mycorrhizal Symbiosis

open access: yesPlants
Hydroxyproline O-arabinosyltransferase (HPAT), a critical enzyme in plant glycosylation pathways, catalyzes the transfer of arabinose to the hydroxyl group of hydroxyproline residues.
Kailing Xie   +6 more
doaj   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy