Results 21 to 30 of about 33,123 (219)
Symplectic, Hofer and sub-Riemannian geometry
The purpose of this note is to make some connection between the sub-Riemannian geometry on Carnot-Caratheodory groups and symplectic geometry. We shall concentrate here on the Heisenberg group, although it is transparent that almost everything can be done on a general Carnot-Caratheodory group.
Marius Buliga
openalex +4 more sources
C-R Immersions and Sub-Riemannian Geometry
On any strictly pseudoconvex CR manifold M, of CR dimension n, equipped with a positively oriented contact form θ, we consider natural ϵ-contractions, i.e., contractions gϵM of the Levi form Gθ, such that the norm of the Reeb vector field T of (M, θ) is ...
Elisabetta Barletta+2 more
doaj +1 more source
Branching Geodesics in Sub-Riemannian Geometry [PDF]
In this note, we show that sub-Riemannian manifolds can contain branching normal minimizing geodesics. This phenomenon occurs if and only if a normal geodesic has a discontinuity in its rank at a non-zero time, which in particular for a strictly normal geodesic means that it contains a non-trivial abnormal subsegment.
Mietton, T., Rizzi, L.
openaire +5 more sources
On measures in sub-Riemannian geometry [PDF]
In \cite{gjha} we give a detailed analysis of spherical Hausdorff measures on sub-Riemannian manifolds in a general framework, that is, without the assumption of equiregularity. The present paper is devised as a complement of this analysis, with both new results and open questions.
Ghezzi, Roberta, Jean, Frédéric
openaire +4 more sources
Sub-Riemannian Curvature in Contact Geometry [PDF]
31 pages, 2 figures; v2: the Bonnet-Myers theorem 1.7 now holds for any contact structure; v3: final version (with expanded introduction) to appear on Journal of Geometric Analysis; v4: fixed ...
Agrachev, Andrey+2 more
openaire +6 more sources
In this article, we establish a Gaffney type inequality, in Wℓ,p{W}^{\ell ,p}-Sobolev spaces, for differential forms on sub-Riemannian contact manifolds without boundary, having bounded geometry (hence, in particular, we have in mind noncompact manifolds)
Baldi Annalisa+2 more
doaj +1 more source
Integral Formulas for Almost Product Manifolds and Foliations
Integral formulas are powerful tools used to obtain global results in geometry and analysis. The integral formulas for almost multi-product manifolds, foliations and multiply twisted products of Riemannian, metric-affine and sub-Riemannian manifolds, to ...
Vladimir Rovenski
doaj +1 more source
Bicycle paths, elasticae and sub-Riemannian geometry [PDF]
Abstract We relate the sub-Riemannian geometry on the group of rigid motions of the plane to ‘bicycling mathematics’. We show that this geometry’s geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or ‘metric lines’) correspond ...
Richard Montgomery+5 more
openaire +4 more sources
Intrinsic fractional Taylor formula
We consider a class of non-local ultraparabolic Kolmogorov operators and a suitable fractional Holder spaces that take into account the intrinsic sub-riemannian geometry induced by the operators.
Maria Manfredini
doaj +1 more source
Sub-Riemannian geometry of parallelizable spheres [PDF]
The first aim of the present paper is to compare various sub-Riemannian structures over the three dimensional sphere S^3 originating from different constructions. Namely, we describe the sub-Riemannian geometry of S^3 arising through
Godoy Molina , Mauricio, Markina , Irina
openaire +4 more sources