Results 261 to 270 of about 792,149 (335)

Investigation of Iron‐Aluminide‐Like Phase Composition in Complex Concentrated Fe32Cu12Ni11Ti16Al29 Alloy

open access: yesAdvanced Engineering Materials, EarlyView.
This work reveals the phase composition and quantitative morphology analysis of precipitation‐hardened Fe32Cu12Ni11Ti16Al29 complex‐concentrated alloy. The precipitates are shown to have a high coherency. Morphology transition between sphere, cuboidal, and elongated morphology is observed. Finally, the overaging behavior is captured using microhardness.
Rostyslav Nizinkovskyi   +4 more
wiley   +1 more source

Cleavage of MEP-1 by DPF-3 Reveals Novel Substrate Specificity and Its Impact on Reproductive Fitness

open access: yes
Aygün I   +6 more
europepmc   +1 more source

Laser Metal Deposited Ti4822 Hollow Pipe: Experimental and Computational Modelling Study

open access: yesAdvanced Engineering Materials, EarlyView.
Laser metal deposition (LMD) of a crack‐free built Ti4822 alloys is challenging. This article reports outstanding characteristics of a hollow pipe that is built with LMD technology when a predicted, nontransformation substrate temperature of 800 °C is used.
Sadiq A. Raji   +5 more
wiley   +1 more source

Microstructural Evolution and Mechanical Property Degradation of Sn0.5Ag0.7Cu5Bi Solder Joints with High Indium Alloying

open access: yesAdvanced Engineering Materials, EarlyView.
This study identifies 12 wt% indium (In) as the optimal composition for Sn0.5Ag0.7Cu5Bi solder joints, achieving 87% ductile fracture and 81% suppression of intermetallic compound (IMC) growth versus 4 wt% In. High‐In alloys (15–17 wt%) show abnormal IMC thickening due to thermal activation.
Liuwei Wang   +11 more
wiley   +1 more source

Additive Processing of Ti‐17 by Wire Arc Directed Energy Deposition: An Investigation of the Microstructure and Mechanical Properties

open access: yesAdvanced Engineering Materials, EarlyView.
This study focuses on processing the titanium alloy Ti‐17 using wire arc directed energy deposition (waDED), with an emphasis on the microstructure and mechanical properties. The waDED typical heat‐affected zone banding is characterized and related to the local mechanical properties.
Alexander Wenda   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy