Results 81 to 90 of about 374,998 (364)

Light‐Responsive Enzyme‐Loaded Nanoparticles for Tunable Adhesion and Mechanical Wound Contraction

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a photoactivatable enzyme‐loaded mesoporous nanoparticle system (MPDA_PaTy) that enables light‐triggered tunable tissue adhesion and facilitates mechanical wound contraction. Controlled enzymatic crosslinking at tissue or hydrogel interfaces allows on‐demand adhesion.
Junghyeon Ko   +10 more
wiley   +1 more source

Bioinspired Design of a Wet‐Adhesive Cornea Glue Based on Recombinant Human Protein Networks

open access: yesAdvanced Functional Materials, EarlyView.
Natures protein‐based high performance materials e.g. elastin, silk and muscle proteins have been mimicked by a new protein‐hybrid material based on redesigned human partial sequences only, showing high wet‐adhesiveness and elasticity for biomedical applications.
Anna Resch   +17 more
wiley   +1 more source

Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase

open access: yesAdvanced Functional Materials, EarlyView.
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint   +6 more
wiley   +1 more source

From In‐Silico Optimized Microfabrication to Experimental Validation: Engineering a Tridimensional Epi‐Intraneural Interface

open access: yesAdvanced Functional Materials, EarlyView.
An epi‐intraneural interface is developed through in silico optimization and a novel tridimensional microfabrication pipeline. The device integrates penetrating and epineural contacts on a flexible substrate. Mechanical, electrochemical, and in vivo testing in rat and pig reveal robust implantation, low‐threshold activation, and site‐dependent ...
Federico Ciotti   +14 more
wiley   +1 more source

Novel High Efficient Coatings for Anti-Microbial Surgical Sutures Using Chlorhexidine in Fatty Acid Slow-Release Carrier Systems

open access: yesPLoS ONE, 2014
Sutures can cause challenging surgical site infections, due to capillary effects resulting in bacteria permeating wounds. Anti-microbial sutures may avoid these complications by inhibiting bacterial pathogens.
A. Obermeier   +7 more
semanticscholar   +1 more source

Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking

open access: yesAdvanced Functional Materials, EarlyView.
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh   +4 more
wiley   +1 more source

Efficacy of reinforcing sutures for prevention of anastomotic leakage after low anterior resection for rectal cancer: A systematic review and meta‐analysis

open access: yesCancer Reports
Background and Objectives Anastomotic leakage is a serious complication following surgery for cancer of the rectum. It is not clear whether reinforcing sutures could prevent anastomotic leakage.
Shuanhu Wang   +6 more
doaj   +1 more source

A comparison of efficacy of autologous platelet-rich plasma and conventional sutures in anchoring split skin graft on wounds

open access: yesJournal of the Scientific Society
Context: Split thickness skin grafting (STSG) restores cutaneous cover over wounds thus protecting the underlying surface from contamination, fluid loss and stimulates healing.
Urbee Gupta   +3 more
doaj   +1 more source

An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy