Results 21 to 30 of about 5,736 (264)
Autophagy in cancer and protein conformational disorders
Autophagy plays a crucial role in numerous biological processes, including protein and organelle quality control, development, immunity, and metabolism. Hence, dysregulation or mutations in autophagy‐related genes have been implicated in a wide range of human diseases.
Sergio Attanasio
wiley +1 more source
The protonated form of butyrate, as well as other short‐chain fatty acids (SCFAs), is membrane permeable. In acidic extracellular environments, this can lead to intracellular accumulation of SCFAs and cytosolic acidification. This phenomenon will be particularly relevant in acidic environments such as the large intestine or tumor microenvironments ...
Muwei Jiang+2 more
wiley +1 more source
A stepwise emergence of evolution in the RNA world
How did biological evolution emerge from chemical reactions? This perspective proposes a gradual scenario of self‐organization among RNA molecules, where catalytic feedback on random mixtures plays the central role. Short oligomers cross‐ligate, and self‐assembly enables heritable variations. An event of template‐externalization marks the transition to
Philippe Nghe
wiley +1 more source
Brucella NyxA and NyxB dimerization enhances effector function during infection
Brucella abortus thrives inside cells thanks to the translocation of effector proteins that fine‐tune cellular functions. NyxA and NyxB are two effectors that destabilize the nucleolar localization of their host target, SENP3. We show that the Nyx proteins directly interact with each other and that their dimerization is essential for their function ...
Lison Cancade‐Veyre+4 more
wiley +1 more source
UDP‐glucuronic acid 4‐epimerase (UGAepi) catalyzes NAD+‐dependent interconversion of UDP‐glucuronic acid (UDP‐GlcA) and UDP‐galacturonic acid (UDP‐GalA) via C4‐oxidation, 4‐keto‐intermediate rotation, and C4‐reduction. Here, Borg et al. examined the role of the substrate's carboxylate group in the enzymic mechanism by analyzing NADH‐dependent reduction
Annika J. E. Borg+2 more
wiley +1 more source
B cells sense external mechanical forces and convert them into biochemical signals through mechanotransduction. Understanding how malignant B cells respond to physical stimuli represents a groundbreaking area of research. This review examines the key mechano‐related molecules and pathways in B lymphocytes, highlights the most relevant techniques to ...
Marta Sampietro+2 more
wiley +1 more source
In this issue of Blood , [Hyvarinen et al][1][1][2] show that mutant forms of complement factor H, which are commonly associated with atypical hemolytic uremic syndrome (aHUS), have impairments in binding to sialic acid on C3b-coated erythrocytes, platelets, and endothelial cells.
openaire +3 more sources
Glutaredoxin (Grx) 3 proteins contain a thioredoxin domain and one to three class II Grx domains. These proteins play a crucial role in iron homeostasis in eukaryotic cells. In human Grx3, at least one of the two Grx domains, together with the thioredoxin domain, is essential for its function in iron metabolism.
Laura Magdalena Jordt+4 more
wiley +1 more source
Evolutionary interplay between viruses and R‐loops
Viruses interact with specialized nucleic acid structures called R‐loops to influence host transcription, epigenetic states, latency, and immune evasion. This Perspective examines the roles of R‐loops in viral replication, integration, and silencing, and how viruses co‐opt or avoid these structures.
Zsolt Karányi+4 more
wiley +1 more source
Disruption of SETD3‐mediated histidine‐73 methylation by the BWCFF‐associated β‐actin G74S mutation
The β‐actin G74S mutation causes altered interaction of actin with SETD3, reducing histidine‐73 methylation efficiency and forming two distinct actin variants. The variable ratio of these variants across cell types and developmental stages contributes to tissue‐specific phenotypical changes. This imbalance may impair actin dynamics and mechanosensitive
Anja Marquardt+8 more
wiley +1 more source