Results 131 to 140 of about 420,443 (264)
Thermal Phase‐Modulation of Thickness‐Dependent CVD‐Grown 2D In2Se3
A comprehensive study of CVD‐grown 2D In2Se3 reveals a distinct thickness‐dependent phase landscape and a reversible, thermally driven transformation between β″ and β* variants. In situ TEM electron diffraction and Raman spectroscopy reveal structural dynamics, while the structural invariance of the α‐phase in ultrathin regimes highlights its stability—
Dasun P. W. Guruge +6 more
wiley +1 more source
Free‐standing plasmonic gold‐based fractal antennas are fabricated by 3D nanoprinting, employing focused electron beam induced deposition and an optimized purification method to remove carbon while conserving structural fidelity. Simulation and experiment show broadband plasmonic activity, including customizable polarizability, thereby paving the way ...
Verena Reisecker +6 more
wiley +1 more source
This work reveals a fundamental trade‐off between plasmonic and dielectric metasurfaces for molecular sensing. A clear performance crossover is identified: dielectric metasurfaces excel in air, while plasmonic metasurfaces dominate in lossy solvents. These results establish design rules for infrared metasurface sensors and enable optimized performance ...
Tao Jiang +8 more
wiley +1 more source
Gd‐doped BFO (BGFO) exhibits a ∼2‐order reduction in leakage current owing to its lowest content of oxygen vacancies. This leads to a ∼2.5‐fold increase in remnant polarization. These improvements in BGFO effectively boost charge separation and transportation, resulting in the greatest incident photon‐to‐current efficiency of 12.9 ± 0.73% and a ∼1.5 ...
Ming‐Wei Chu +7 more
wiley +1 more source
Reconfigurable Metamirrors Based on Compliant Mechanisms
Providing the basis for numerous practical applications, the reconfigurability of metadevices is of great importance. Through the integration of controlled mechanical deformation with chiral meta‐atoms, a compliant mechanism based metamirror is demonstrated for active control over the polarization of electromagnetic waves.
Galestan Mackertich‐Sengerdy +3 more
wiley +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Two‐Dimensional Materials as a Multiproperty Sensing Platform
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana +11 more
wiley +1 more source
This work proposes a dual‐surface reaction strategy to optimize the interfacial contacts in organic–inorganic photodetectors. 1,4,5,8,9,11‐hexaazatriphenylene hexacarbonitrile (HAT‐CN) and ytterbium layers are designed to react with the Si surface, thus minimizing noise.
Yibo Zhang +9 more
wiley +1 more source
Emergent Magnetic Structures at the 2D Limit of the Altermagnet MnTe
Renewed interest in MnTe has emerged due to its intriguing altermagnetism, a newly identified form of magnetism distinct from conventional ferro‐, antiferro‐, or paramagnetism. By combining magnetic X‐ray absorption spectroscopy, scanning tunnelling microscopy, and first‐principles theory, this study reveals that thinning MnTe to the 2D limit ...
Marc G. Cuxart +10 more
wiley +1 more source

