Results 181 to 190 of about 399,096 (271)

Selective Membrane for Non‐Aqueous Electrochemical Flow Cells

open access: yesAdvanced Functional Materials, EarlyView.
Sulfonated fixed charge functionalization is increased to improve the conductivity of a cation exchange membrane in a non‐aqueous electrochemical cell. Based on ex situ analyses, the material achieved the highest selectivity for this type of system to date.
Charles R. Leroux   +2 more
wiley   +1 more source

Bridging Theory and Experiment: Machine Learning Potential‐Driven Insights into pH‐Dependent CO₂ Reduction on Sn‐Based Catalysts

open access: yesAdvanced Functional Materials, EarlyView.
Machine learning potential (MLP) enables large‐scale molecular dynamics (MD) simulations, uncovering dynamic surface reconstruction of SnO₂ and SnS₂ under CO₂ reduction reaction condition. The negative dipole moments upon *OCHO adsorption are the primary factors driving the leftward shift of the volcano plot.
Yuhang Wang   +9 more
wiley   +1 more source

Accelerated Kinetics of Desolvation and Redox Transformation Enabled by MOF Sieving for High‐Loading Mg‐S Battery

open access: yesAdvanced Functional Materials, EarlyView.
A strategy of sieving catalysis based on the MIL‐101(Cr) with multistage pore structure and Lewis acid sites has been proposed as the catalyst to accelerate the kinetics of desolvation and redox conversion of sulfur species, achieving high performance Mg‐S batteries.
Qinghua Guan   +8 more
wiley   +1 more source

Formation of 2D Electron Gas at a Non‐Polar Perovskite Oxide Interface: SrHfO3/BaSnO3

open access: yesAdvanced Functional Materials, EarlyView.
Through experiments and Poisson‐Schrödinger simulations, 2D electron gas formed at the non‐polar SrHfO3/BaSnO3 interface is observed. A large conduction band offset enables modulation doping by the intrinsic deep donors in SrHfO3, resulting in carrier confinement in BaSnO3 without relying on interfacial polarization or termination‐layer engineering ...
Jongkyoung Ko   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy