Results 191 to 200 of about 957,593 (356)

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

Synergistic Effect of Conditioned Medium and Calcium Phosphate Biocement on Osteogenic Properties of Composite. [PDF]

open access: yesJ Funct Biomater
Giretová M   +5 more
europepmc   +1 more source

Patient‐specific pharmacogenomics demonstrates xCT as predictive therapeutic target in colon cancer with possible implications in tumor connectivity

open access: yesMolecular Oncology, EarlyView.
This study integrates transcriptomic profiling of matched tumor and healthy tissues from 32 colorectal cancer patients with functional validation in patient‐derived organoids, revealing dysregulated metabolic programs driven by overexpressed xCT (SLC7A11) and SLC3A2, identifying an oncogenic cystine/glutamate transporter signature linked to ...
Marco Strecker   +16 more
wiley   +1 more source

Procyanidin displayed a synergistic effect with roxadustat on renal anemia in mice. [PDF]

open access: yesFront Pharmacol
Cui M   +10 more
europepmc   +1 more source

Optimizing Acid Stimulation In Carbonate Reservoirs: Synergistic Effect of Retarded Acid and Hydrochloric Acid

open access: green
Juan Du   +7 more
openalex   +1 more source

Predictors of response and rational combinations for the novel MCL‐1 inhibitor MIK665 in acute myeloid leukemia

open access: yesMolecular Oncology, EarlyView.
This study characterizes the responses of primary acute myeloid leukemia (AML) patient samples to the MCL‐1 inhibitor MIK665. The results revealed that monocytic differentiation is associated with MIK665 sensitivity. Conversely, elevated ABCB1 expression is a potential biomarker of resistance to the treatment, which can be overcome by the combination ...
Joseph Saad   +17 more
wiley   +1 more source

Aggressive prostate cancer is associated with pericyte dysfunction

open access: yesMolecular Oncology, EarlyView.
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy