Results 211 to 220 of about 692,380 (296)

Defects Dynamic in Photo‐Excited CeO2 and their Influence on CO2 Photoreduction

open access: yesAdvanced Functional Materials, EarlyView.
X‐ray photoelectron spectroscopy study under light excitation is presented to track the defect dynamic (Ce4+ to Ce3+) in CeO2. Surface enhanced Raman spectroscopy confirmed the key role of Ce3+ states in controlling charge and energy transfer across the CeO2‐dye molecule interface.
Rambabu Yalavarthi   +3 more
wiley   +1 more source

Multicolor Optoelectronic Synapse Enabled by Photon‐Modulated Remote Doping in Solution‐Processed Van Der Waals Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
Multicolor optoelectronic synapses are realized by vertically integrating solution‐processed MoS2 thin‐film and SWCNT. The electronically disconnected but interactive MoS2 enables photon‐modulated remote doping, producing a bi‐directional photoresponse.
Jihyun Kim   +8 more
wiley   +1 more source

Fluorescent Nanodiamonds Based Theranostic Platform for pH‐Sensitive Drug Delivery and Quantum Sensing

open access: yesAdvanced Functional Materials, EarlyView.
A multifunctional nanodiamond platform enables pH‐triggered Diazoxide (DZX) delivery and quantum sensing of subcellular radical dynamics in triple‐negative breast cancer cells. Diamond relaxometry revealed reduced lysosomal radicals during DZX‐induced mitochondrial radical elevation, providing insights into redox modulation and organelle‐ resolved ...
Kaiqui Wu   +8 more
wiley   +1 more source

Complex Cryptographic and User‐Centric Physically Unclonable Functions Enabled by Strain‐Sensitive Nanocrystals via Selective Ligand Exchange

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates electromechanical PUFs that improve on traditional electric PUFs. The electron transport materials are coated randomly through selective ligand exchange. It produces multiple keys and a key with motion dependent on percolation and strain, and approaches almost ideal inter‐ and intra‐hamming distances.
Seungshin Lim   +7 more
wiley   +1 more source

Rapid Sintering of Porous Organic Polymer Powders Into Mechanically Strong Monoliths for Efficient CO2 Capture

open access: yesAdvanced Functional Materials, EarlyView.
Spark plasma sintering enables rapid processing of porous organic polymer (POP) from fine powders to a freestanding and mechanically robust monolith. The sintering process retains the CO2 adsorption capacity and CO2/N2 selectivity, making the monolith more suitable as a solid sorbent for practical carbon capture applications.
Duan Li   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy