Results 221 to 230 of about 33,673 (310)

Interface and strain energy driven variant selection in lamellar Ti-Al alloys. [PDF]

open access: yesDiscov Nano
Zhang Z   +6 more
europepmc   +1 more source

Flexible Memory: Progress, Challenges, and Opportunities

open access: yesAdvanced Intelligent Discovery, EarlyView.
Flexible memory technology is crucial for flexible electronics integration. This review covers its historical evolution, evaluates rigid systems, proposes a flexible memory framework based on multiple mechanisms, stresses material design's role, presents a coupling model for performance optimization, and points out future directions.
Ruizhi Yuan   +5 more
wiley   +1 more source

Inverse Design of Alloys via Generative Algorithms: Optimization and Diffusion within Learned Latent Space

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla   +4 more
wiley   +1 more source

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Automated Alignment Powered by Computer Vision Streamlines the Two‐Photon Polymerization‐Based Micro 3D Printing of Multiscale and Multimaterial Structures

open access: yesAdvanced Intelligent Discovery, EarlyView.
Two‐photon polymerization enables high‐resolution microfabrication, but performing alignment when printing multiple structures is difficult. Here, we present a fast, robust, and open‐source protocol for automated alignment on Nanoscribe systems. Achieving ≈0.4 μm accuracy in under 5 s, our protocol reduces time and error in multimaterial printing. This
Daniel Maher   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy