Results 81 to 90 of about 130,799 (295)
Plasma electrolytic oxidation is combined with ultrasonic spray deposition of polycaprolactone (PCL) on WE43 magnesium alloy to improve adhesion, corrosion resistance, and cytocompatibility. The hybrid coating demonstrates significantly reduced hydrogen evolution and enhances mechanical bonding, offering a promising strategy for next‐generation ...
Seyed Masih Mousavizadeh +9 more
wiley +1 more source
Bioinspired Materials, Designs, and Manufacturing Strategies for Advanced Impact‐Resistant Helmets
This review explores how bioinspired materials, structures, and manufacturing strategies transform helmet design to achieve enhanced impact resistance. Drawing inspiration from nacre, porcupine quills, beetle exoskeletons, and skull architectures, it highlights advances in auxetic lattices, nanocomposites, and functionally graded foams.
Joseph Schlager +4 more
wiley +1 more source
Integrated onto three-dimensional (3D) scaffolds, graphene quantum dots (GQDs) present a novel method for tissue creation and precision drug delivery. Among its special characteristics are photoluminescence, biocompatibility, and a large surface area fit
Yuvaraj Muthu +4 more
doaj +1 more source
This study reports the fabrication of trabecular bioactive glass scaffolds (composition “1d”: 46.1SiO2‐28.7CaO‐8.8MgO‐6.2P2O5‐5.7CaF2‐4.5Na2O wt%) through vat photopolymerization and the relevant results from mechanical testing and in vivo implantation procedures in rabbit femora, showing great promise for bone tissue engineering applications.
Dilshat Tulyaganov +8 more
wiley +1 more source
3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht +5 more
wiley +1 more source
A high‐performance n‐type element for quasi‐solid‐state thermocells has been introduced, outperforming conventional p‐type elements and showcasing the potential to harness body heat as an energy source or power embedded sensors. This advance significantly contributes to waste thermal energy harvesting and wearable technology, paving the way for self ...
Gilyong Shin +10 more
wiley +1 more source
Optimization of Selective Laser Sintering Process Parameters Based on PA12 Powders for Bone Tissue Scaffolds. [PDF]
Yan R, Xie C, Zhao Z, Li J.
europepmc +1 more source
Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
A novel strategy to design thermally induced gelling systems with tunable material properties is reported. Polymeric mixed‐shell micelles displaying multiple thermosensitive patchy domains formed hydrogels by assembling into well‐entangled worm‐like network structures upon heating to body temperature. The patchy micelle design significantly affects the
Binru Han +9 more
wiley +1 more source
The Study on the Morphology and Compression Properties of Microcellular TPU/Nanoclay Tissue Scaffolds for Potential Tissue Engineering Applications. [PDF]
Geng T +7 more
europepmc +1 more source
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski +9 more
wiley +1 more source

