Results 211 to 220 of about 2,394,994 (228)

Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro   +4 more
wiley   +1 more source

Chromaticity Control in Light‐Emitting Electrochemical Cells via Thermally Activated Emission in Assemblies of a BN‐Doped Pyrenyl Hydrocarbon

open access: yesAdvanced Functional Materials, EarlyView.
The successful color control in light‐emitting electrochemical cells based on highly emissive green‐emitting BN‐doped polyaromatic hydrocarbon with thermally activated NIR emitting assemblies. Abstract This work outlines the synthesis and photo‐/electro‐luminescent behavior of a new C‐shaped BN‐doped benzenoid hydrocarbon using N‐directed borylation in
Luca M. Cavinato   +6 more
wiley   +1 more source

A Robust Dual‐mode Self‐Monitoring Battery Thermal Management System via Bilayer Structural Design

open access: yesAdvanced Functional Materials, EarlyView.
An adaptive dual‐mode material capable of both evaporative cooling and photothermal preheating is developed. It achieves a cooling efficiency of 53.9%, surpassing existing evaporative cooling counterparts, and a self‐monitoring capability, making it ideal for electric vehicles, portable electronics, and grid‐scale energy storage.
Shanchi Wang   +7 more
wiley   +1 more source

The Maintenance of Tolerance After Successful Immune Tolerance Induction in Hemophilia A and B: The North American Registry

open access: green, 2000
D. DiMichele   +9 more
openalex   +1 more source

Artificial Intelligence‐Driven Development in Rechargeable Battery Materials: Progress, Challenges, and Future Perspectives

open access: yesAdvanced Functional Materials, EarlyView.
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu   +5 more
wiley   +1 more source

A Complementary Hole‐Transport Layer of PTAA and SAM on FTO Substrate for p‐i‐n Structured Perovskite Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
The complementary roles of Poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine (PTAA) and self‐assembly monolayer (SAM) in a composite hole transport layer for rough fluorine‐doped tin oxide substrates are demonstrated, with PTAA preferentially depositing in the valleys and SAM occupying the peaks, resulting in improved surface potential uniformity ...
Yihao Wang   +10 more
wiley   +1 more source

Synergistic Osteogenesis After Co‐Administration of cmRNAs Encoding BMP‐2 and BMP‐7 Utilizing a Transcript‐Activated Matrix

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that the dual delivery of BMP‐2/‐7 coding cmRNAs for bone healing is demonstrated as feasible, safe, and highly osteogenic. Compared to single BMP‐2 or BMP‐7 cmRNAs, the combination enhances the production of both mineral and organic components of the extracellular matrix when delivered using a collagen‐HA scaffold, supporting ...
Claudia Del Toro Runzer   +7 more
wiley   +1 more source

Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes

open access: yesAdvanced Functional Materials, EarlyView.
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth   +2 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Molecular Engineering of Coacervate Network Binders for Stable Silicon‐Based Anodes in Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A coacervate charged polymer network is designed to regulate Coulomb interactions for stabilizing silicon anodes. By tuning electrostatic interactions, the binders enhance adhesion, stress dissipation, and interfacial stability. The binder with the strongest Coulomb interactions enables high areal capacities and stable full‐cell cycling with Ni‐rich ...
Dong‐Yeob Han   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy