Results 121 to 130 of about 159,058 (244)

Skeletal Muscle HSF1 Alleviates Age‐Associated Sarcopenia and Mitochondrial Function Decline via SIRT3‐PGC1α Axis

open access: yesAdvanced Science, EarlyView.
Aged HSF1 muscle‐specific knockout mice show deteriorated muscle atrophy and metabolic dysfunction, while active HSF1 overexpression improves muscle function via activating SIRT3 to deacetylate both PGC1α1 and PGC1α4, which boosts mitochondrial function and muscle hypertrophy in a fiber‐type specific manner, and induces FNDC5/Irisin for tissue ...
Jun Zhang   +18 more
wiley   +1 more source

Targeting NRP1 in Endothelial Cells Facilitates the Normalization of Scar Vessels and Prevents Fibrotic Scarring

open access: yesAdvanced Science, EarlyView.
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang   +11 more
wiley   +1 more source

p16Ink4a‐Positive Hepatocytes Drive Liver Fibrosis Through Activation of LIFR Family Pathway

open access: yesAdvanced Science, EarlyView.
This study found that, following the long‐term CCl4 treatment, p16high hepatocytes appeared in zone 3, spatially co‐localizing with fibrotic areas. A specific cluster of p16high hepatocytes upregulated CTF1/LIF expression which induced HSC activation and further liver fibrosis, as revealed by single cell transcriptomic analysis.
Koji Nishikawa   +23 more
wiley   +1 more source

Ecological risk analysis of transgenic plants [PDF]

open access: green, 1995
Paul W. Barnes, Kees Hulsman
openalex  

ACSL5 Regulates Glucose Metabolism and Chemotherapy Sensitivity in Colorectal Cancer Cells under Glutamine Deficiency

open access: yesAdvanced Science, EarlyView.
Glutamine deprivation triggers ACSL5 upregulation in tumor cells, sustaining their viability via dual metabolic rewiring programs. ACSL5 enhances glycolysis by relieving p53's inhibition of PGAM1 while also sustaining mitochondrial respiration and TCA cycle flux through promoting IDH2 dimerization.
Shuai Tian   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy