Results 181 to 190 of about 159,058 (244)

Disrupting the Formation of YAP Condensates Promotes the Activation of AMPKα to Inhibit the Progression of Primary Liver Cancer

open access: yesAdvanced Science, EarlyView.
This study systematically investigates the function and molecular mechanisms of YAP phase separation in multiple primary liver cancers. These findings provide novel insights into phase separation‐mediated primary liver cancer development and validate targeted disruption of this process as an effective therapeutic strategy for primary liver cancer ...
Shuang‐Zhou Peng   +7 more
wiley   +1 more source

Prunus Hexokinase 3 genes alter primary C-metabolism and promote drought and salt stress tolerance in Arabidopsis transgenic plants. [PDF]

open access: yesSci Rep, 2021
Pérez-Díaz J   +11 more
europepmc   +1 more source

Contribution of Gli1+ Adventitial Stem Cells to Smooth Muscle Cells in Atherosclerosis and Vascular Injury

open access: yesAdvanced Science, EarlyView.
Gli1+ adventitial stem cells (ASCs) have been thought to generate smooth muscle cells (SMCs) in atherosclerosis. Using a dual‐recombinase lineage tracing to exclude ectopic labeling, Wang et al. found that Gli1+ ASCs do not contribute to SMCs in atherosclerotic plaques.
Haixiao Wang   +11 more
wiley   +1 more source

A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. [PDF]

open access: yesNat Biotechnol, 2020
Debernardi JM   +6 more
europepmc   +1 more source

Metabolic Reprogramming of T Cells by Dual UCP2 and IL‐17 Blockade Enhances Immunity Against Pancreatic Cancer

open access: yesAdvanced Science, EarlyView.
This study demonstrates that dual UCP2/IL‐17 blockade reprograms T‐cell metabolism to overcome PDAC immunosuppression. Genipin‐mediated UCP2 inhibition enhances CD8⁺ T‐cell IFN‐γ via IL‐12R/STAT4/mTOR signaling and mitochondrial OXPHOS. Combined IL‐17 depletion amplifies Tc1/Th1 responses, reduces MDSCs, and prolongs survival in PDAC models ...
Chuan‐Teng Liu   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy