Results 171 to 180 of about 148,004 (286)

Biological Plausibility of Using Plasma Amino Acid Profile Determination as a Potential Biomarker for Pediatric Patients with Mild Traumatic Brain Injuries. [PDF]

open access: yesNeurol Int
Pérez-Arredondo A   +11 more
europepmc   +1 more source

Disrupting CSPG‐Driven Microglia–Astrocyte Crosstalk Enables Scar‐Free Repair in Spinal Cord Injury

open access: yesAdvanced Science, EarlyView.
This study identifies CSPGs as key drivers of glial scar maturation after spinal cord injury by reprogramming microglial metabolism and inducing astrocyte fibrosis. To address this, a reactive oxygen species‐responsive, reactive astrocyte‐targeted ChABC gene delivery system is designed to locally degrade CSPGs, precisely disrupt maladaptive glial ...
Yufei Zheng   +10 more
wiley   +1 more source

Predicting brain age for veterans with traumatic brain injuries and healthy controls: an exploratory analysis. [PDF]

open access: yesFront Aging Neurosci
Coetzee JP   +10 more
europepmc   +1 more source

Crossing the Blood–Brain Barrier with Molecularly Imprinted Polymeric Nanocarriers: An Emerging Frontier in Brain Disease Therapy

open access: yesAdvanced Science, EarlyView.
Molecularly imprinted polymeric nanocarriers (nanoMIPs) offer robust, antibody‐mimetic platforms to overcome the blood‐brain barrier. The article surveys nanoMIP design and ligand‐directed surface engineering that harness receptor‐mediated transcytosis, and highlights therapeutic and diagnostic applications in neurodegeneration, brain tumors and ...
Ranjit De, Shuliang Shi, Kyong‐Tai Kim
wiley   +1 more source

Neuroprotection for traumatic brain injury

open access: green, 2015
David J. Loane   +2 more
openalex   +1 more source

Osteoclast‐Derived SLIT3 Mediates Osteoarthritis Pain and Degenerative Changes

open access: yesAdvanced Science, EarlyView.
In TMJ‐OA, osteoclasts play a significant role in promoting the growth of sensory nerves at the osteochondral interface. In early OA, TRAP+ osteoclast‐derived SLIT3 induces sensory nerve growth into the condylar cartilage. This nerve growth facilitates the development of pain associated with OA.
Weiwei Zhu   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy