Results 131 to 140 of about 826,823 (225)

Protein O‐glycosylation in the Bacteroidota phylum

open access: yesFEBS Open Bio, EarlyView.
Species of the Bacteroidota phylum exhibit a unique O‐glycosylation system. It modifies noncytoplasmic proteins on a specific amino acid motif with a shared glycan core but a species‐specific outer glycan. A locus of multiple glycosyltransferases responsible for the synthesis of the outer glycan has been identified.
Lonneke Hoffmanns   +2 more
wiley   +1 more source

The privacy cost of fine-grained electrical consumption data. [PDF]

open access: yesSci Rep
Voyez A   +5 more
europepmc   +1 more source

Long non‐coding RNAs as therapeutic targets in head and neck squamous cell carcinoma and clinical application

open access: yesFEBS Open Bio, EarlyView.
Long non‐coding RNAs (lncRNAs) occupy an abundant fraction of the eukaryotic transcriptome and an emerging area in cancer research. Regulation by lncRNAs is based on their subcellular localization in HNSCC. This cartoon shows the various functions of lncRNAs in HNSCC discussed in this review.
Ellen T. Tran   +3 more
wiley   +1 more source

Matrigel inhibits elongation and drives endoderm differentiation in aggregates of mouse embryonic stem cells

open access: yesFEBS Open Bio, EarlyView.
Stem cell‐based embryo models (SCBEMs) are valuable to study early developmental milestones. Matrigel, a basement membrane matrix, is a critical substrate used in various SCBEM protocols, but its role in driving stem cell lineage commitment is not clearly defined.
Atoosa Amel   +3 more
wiley   +1 more source

Knockout of the mitoribosome rescue factors Ict1 or Mtrfr is viable in zebrafish but not mice: compensatory mechanisms underlying each factor's loss

open access: yesFEBS Open Bio, EarlyView.
Mitochondria contain two mitoribosome rescue factors, ICT1 and MTRFR (C12orf65). ICT1 also functions as a mitoribosomal protein in mice and humans, and its loss is lethal. Although Mtrfr knockout mice could not be generated, knockout zebrafish lines for ict1 and mtrfr were established.
Nobukazu Nameki   +11 more
wiley   +1 more source

GDP‐fucose transporter SLC35C1: a potential regulatory role in cytosolic GDP‐fucose and fucosylated glycan synthesis

open access: yesFEBS Open Bio, EarlyView.
The inactivation of SLC35C1 (GDP‐fucose transporter) and enzymes involved in GDP‐fucose biosynthesis was studied. Fucose supplementation increases the level of GDP‐fucose to abnormal, millimolar values in the absence of the TSTA3 protein and SLC35C1 in contrast to the GMDS/SLC35C1 double mutant.
Edyta Skurska, Mariusz Olczak
wiley   +1 more source

Home - About - Disclaimer - Privacy