Results 221 to 230 of about 174,217 (383)

Injectable Stimuli‐Responsive Amphiphilic Hydrogel for Rapid Hemostasis, Robust Tissue Adhesion, and Controlled Drug Delivery in Trauma and Surgical Care

open access: yesAdvanced Healthcare Materials, EarlyView.
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel   +5 more
wiley   +1 more source

Assessing the tolerance to room temperature and viability of freeze-dried mice spermatozoa over long-term storage at room temperature under vacuum [PDF]

open access: gold, 2018
Yuko Kamada   +6 more
openalex   +1 more source

An In Situ Embedded B‐MOF Sponge With Shape‐Memory for All‐in‐One Diabetic Wound Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
A smart shape‐memory sponge dressing (P1A3@B‐MOF) is developed for accelerated diabetic wound healing. It achieves pH‐responsive corelease of Zn2+ and salvianolic acid B, synergistically providing antibacterial action, repolarizing macrophages to the M2 phenotype, and promoting angiogenesis.
Hai Zhou   +11 more
wiley   +1 more source

A ready-to-use vacuum freeze-drying installation [PDF]

open access: yesChemical & Engineering News Archive, 1952
openaire   +1 more source

Nb2C‐Reinforced Hydrogel Microneedle as Dual ROS‐Scavenging Platform to Promote Diabetic Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
An advanced microneedle patch integrating niobium carbide nanosheets and curcumin is engineered for diabetic wound healing. The system enables dual ROS scavenging and NIR‐enhanced antimicrobial activity, effectively rebalancing the oxidative microenvironment, promoting macrophage repolarization and angiogenesis, and accelerating full‐thickness wound ...
Zhi Zheng   +12 more
wiley   +1 more source

Controllable Dynamic Mechanical Cell Stimulation using Magnetically Actuated Artificial Cilia

open access: yesAdvanced Healthcare Materials, EarlyView.
This paper introduces a platform based on magnetic artificial cilia for providing controllable dynamic mechanical stimulation to single cells, suitable for investigating large cell populations and enabling live cell imaging. Proof‐of‐principle experiments show that cell morphology is strongly influenced by the artificial cilia, that cellular forces can
Roel Kooi   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy