Results 141 to 150 of about 3,580,112 (356)

DDX3X induces mesenchymal transition of endothelial cells by disrupting BMPR2 signaling

open access: yesFEBS Open Bio, EarlyView.
Elevated DDX3X expression led to downregulation of BMPR2, a key regulator of endothelial homeostasis and function. Our co‐immunoprecipitation assays further demonstrated a molecular interaction between DDX3X and BMPR2. Notably, DDX3X promoted lysosomal degradation of BMPR2, thereby impairing its downstream signaling and facilitating endothelial‐to ...
Yu Zhang   +7 more
wiley   +1 more source

Poxvirus vectors

open access: yesVaccine, 2013
Kreijtz, J, Gilbert, S, Sutter, G
openaire   +3 more sources

ATP13A2 is involved in intracellular polyamine transport in lung epithelial cells

open access: yesFEBS Open Bio, EarlyView.
Spermidine transport in lung epithelial cells involves the polyamine transporter ATP13A2. Cell proliferation is associated with the upregulation of ATP13A2. Polyamines are present in all living cells and are implicated in various crucial cellular processes such as proliferation, apoptosis and autophagy.
Yuta Hatori   +8 more
wiley   +1 more source

Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers

open access: yesConference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 1994
C. Perkins, P. Bhagwat
semanticscholar   +1 more source

TMC4 localizes to multiple taste cell types in the mouse taste papillae

open access: yesFEBS Open Bio, EarlyView.
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata   +6 more
wiley   +1 more source

Gene Selection for Cancer Classification using Support Vector Machines

open access: yesMachine-mediated learning, 2002
Isabelle M Guyon   +3 more
semanticscholar   +1 more source

SIRT4 positively regulates autophagy via ULK1, but independently of HDAC6 and OPA1

open access: yesFEBS Open Bio, EarlyView.
Cells expressing SIRT4 (H161Y), a catalytically inactive mutant of the sirtuin SIRT4, fail to upregulate LC3B‐II and exhibit a reduced autophagic flux under stress conditions. Interestingly, SIRT4(H161Y) promotes phosphorylation of ULK1 at S638 and S758 that are associated with inhibition of autophagy initiation.
Isabell Lehmkuhl   +13 more
wiley   +1 more source

Support-vector networks

open access: yesMachine-mediated learning, 2004
Corinna Cortes, V. Vapnik
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy