Results 61 to 70 of about 3,783 (150)
Mock Jacobi forms in basic hypergeometric series
We show that some $q$-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and ...
Andrews +4 more
core +1 more source
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
Dirac–Schrödinger operators, index theory and spectral flow
Abstract In this article, we study generalised Dirac–Schrödinger operators in arbitrary signatures (with or without gradings), providing a general KK$\textnormal {KK}$‐theoretic framework for the study of index pairings and spectral flow. We provide a general Callias Theorem, which shows that the index (or the spectral flow, or abstractly the K ...
Koen van den Dungen
wiley +1 more source
Taking limits in topological recursion
Abstract When does topological recursion applied to a family of spectral curves commute with taking limits? This problem is subtle, especially when the ramification structure of the spectral curve changes at the limit point. We provide sufficient (straightforward‐to‐use) conditions for checking when the commutation with limits holds, thereby closing a ...
Gaëtan Borot +4 more
wiley +1 more source
Triple sums of Kloosterman sums and the discrepancy of modular inverses
Abstract We investigate the distribution of modular inverses modulo positive integers c$c$ in a large interval. We provide upper and lower bounds for their box, ball, and isotropic discrepancy, thereby exhibiting some deviations from random point sets. The analysis is based, among other things, on a new bound for a triple sum of Kloosterman sums.
Valentin Blomer +2 more
wiley +1 more source
Lp$L^p$‐norm bounds for automorphic forms via spectral reciprocity
Abstract Let g$g$ be a Hecke–Maaß cusp form on the modular surface SL2(Z)∖H$\operatorname{SL}_2(\mathbb {Z}) \backslash \mathbb {H}$, namely an L2$L^2$‐normalised non‐constant Laplacian eigenfunction on SL2(Z)∖H$\operatorname{SL}_2(\mathbb {Z}) \backslash \mathbb {H}$ that is additionally a joint eigenfunction of every Hecke operator. We prove the L4$L^
Peter Humphries, Rizwanur Khan
wiley +1 more source
Analogues of the Bol operator for half-integral weight weakly holomorphic modular forms [PDF]
Nikolaos Diamantis, Min Lee, Larry Rolen
openalex +1 more source
Orbifold Kodaira–Spencer maps and closed‐string mirror symmetry for punctured Riemann surfaces
Abstract When a Weinstein manifold admits an action of a finite abelian group, we propose its mirror construction following the equivariant 2D TQFT‐type construction, and obtain as a mirror the orbifolding of the mirror of the quotient with respect to the induced dual group action. As an application, we construct an orbifold Landau–Ginzburg mirror of a
Hansol Hong, Hyeongjun Jin, Sangwook Lee
wiley +1 more source
The Borcherds lift for indefinite unitary groups, previously constructed by the author, is examined here in greater detail for the special case of the group U(1,1).
Hofmann, Eric
core +1 more source
The transcendence of zeros of natural basis elements for the space of the weakly holomorphic modular forms for $\Gamma_{0}^{+}(3)$ [PDF]
Soyoung Choi
openalex +1 more source

