Results 221 to 230 of about 289,302 (355)

Response to Wnt Signaling Pathways

open access: yesJournal of Bone and Mineral Research, 2015
Merry Jo Oursler   +9 more
openaire   +1 more source

Gut–Metabolome–Proteome Interactions in Age‐Related Hearing Loss: Insights from Fecal Microbiota Transplantation and Multi‐Omics Analyses

open access: yesAdvanced Science, EarlyView.
Germ‐free (GF) mice receiving fecal microbiota transplantation (FMT) reveal microbiota‐dependent effects on auditory aging. Integrated metagenomic, metabolomic and proteomic profiling maps gut–inner ear network and highlights 5‐hydroxytryptophan (5‐HTP) as a microbiota‐linked metabolic hub in age‐related hearing loss (ARHL).
Ting Yang   +12 more
wiley   +1 more source

Catalyst‐Free Collagen Filament Crosslinking for Engineering Anisotropic and Mechanically Robust Tissue Scaffolds

open access: yesAdvanced Science, EarlyView.
A bioorthogonal rhodamine/PEG crosslinking strategy is introduced to engineer dense collagen hydrogels with high mechanical resilience and cytocompatibility. Integration with wet‐spinning enables the fabrication of uniaxially aligned, cell‐laden collagen filaments that activate mechanotransductive signaling and support functional muscle regeneration in
JuYeon Kim   +4 more
wiley   +1 more source

LILRB4 regulates circadian disruption-induced mammary tumorigenesis via non-canonical WNT signaling pathway. [PDF]

open access: yesOncogene
Ogunlusi O   +17 more
europepmc   +1 more source

Single‐Cell Profiling Across Immune Tissues and Organs Reveals Immunosenescence Signatures in Male Rhesus Monkeys

open access: yesAdvanced Science, EarlyView.
Single‐cell profiling across bone marrow, spleen, mesenteric lymph, and blood in rhesus monkeys reveals organ Immunosenescence. GZMB rises with age, particularly in cytotoxic and terminally exhausted CD8+ T cells, and BHLHE40 emerges as a key transcription factor enriched across multiple CD8+ subsets, regulating pro‐inflammatory and exhaustion‐related ...
Shengnan Wang   +10 more
wiley   +1 more source

Targeting Lactate and Lactylation in Cancer Metabolism and Immunotherapy

open access: yesAdvanced Science, EarlyView.
Lactate, once deemed a metabolic waste, emerges as a central regulator of cancer progression. This review elucidates how lactate and its epigenetic derivative, protein lactylation, orchestrate tumor metabolism, immune suppression, and therapeutic resistance.
Jiajing Gong   +5 more
wiley   +1 more source

CRP and HNF1A collaborate to regulate the progression of laryngeal cancer through the Wnt signaling pathway. [PDF]

open access: yesFunct Integr Genomics
Zhao Z   +12 more
europepmc   +1 more source

Inhibition of the Wnt/β‑catenin signaling pathway reduces autophagy levels in complement treated podocytes

open access: diamond, 2021
Zhaocheng Dong   +11 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy