Results 271 to 280 of about 420,172 (380)

Geometrically‐Screened, Sterically‐Hindered Additive for Wide‐Temperature Aqueous Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A molecular‑engineering strategy combining steric hindrance tuning with geometric optimization identifies cellobiose as an ideal additive for aqueous zinc‑ion batteries, enabling stable Zn deposition across a wide temperature range from −30 to 50 °C. Abstract Aqueous zinc‐ion batteries (AZIBs) are emerging as a highly promising alternative to lithium ...
Sida Zhang   +13 more
wiley   +1 more source

Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations

open access: yes, 2016
Matthew W. L. Smith   +4 more
semanticscholar   +1 more source

An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son   +12 more
wiley   +1 more source

THE STUDY OF THE TRANSITION REGION AT THE INTERFACE OF Si-SiO2 BY XPS

open access: hybrid, 1981
Lin Rong-Fu   +6 more
openalex   +1 more source

Silver Ion‐Mediated [hk1]‐Oriented Sb2Se3 Crystal Growth for Efficient Photoelectrochemical Hydrogen Evolution

open access: yesAdvanced Functional Materials, EarlyView.
Ag+‐mediated hydrothermal crystal engineering promotes preferential [hk1]‐oriented growth of Sb2Se3 via an ultrathin MoOx interlayer, improving crystallinity and suppressing non‐radiative recombination. The optimized Ag+ treatment photocathode delivers 24.7 mA cm−2 at 0 VRHE and improved stability, revealing an ion‐modulated route to high‐performance ...
Ziying Zhang   +10 more
wiley   +1 more source

Transition From Lattice Oxygen to Radical‐Mediated Oxidation in Ammonium‐Intercalated Birnessite Catalysts for Selective Valorization of Biomass to Produce Formic Acid

open access: yesAdvanced Functional Materials, EarlyView.
The catalytic valorization of biomass represents an essential approach for achieving sustainable chemical production, with formic acid (FA) being recognized as a valuable platform chemical for hydrogen storage and environmentally friendly synthetic applications.
Yiqi Geng   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy