Results 191 to 200 of about 44,939 (263)

Regulating Zinc Anode Interface with an Environmental Biomass‐Derived Additive for Long‐Lifespan Aqueous Batteries

open access: yesAdvanced Science, EarlyView.
A biomass‐derived additive synthesized from chitin, 3‐acetylamino‐5‐acetylfuran (3A5AF), resolves key stability issues such as uncontrolled dendrite growth, hydrogen evolution reaction, and corrosion of zinc anodes by reconstructing the solvation structure of the electrolyte and protecting the anode interface. ABSTRACT Aqueous zinc‐based batteries face
Bingbo Ni   +5 more
wiley   +1 more source

V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode. [PDF]

open access: yesNanomicro Lett, 2019
Liu F   +7 more
europepmc   +1 more source

Redox Oligomer Assembling Hierarchical Reinforced Framework Cathodes for Ultra‐Stable High‐Performance Zinc‐Ion Batteries

open access: yesAdvanced Science, EarlyView.
Redox phenoxoline‐benzoquinone oligomer has been designed as reinforced concrete framework like freestanding cathodes for high‐performance ZIBs. An optimal specific capacity of 339.5 mAh g−1 was contributed with exceptional retention of 87.5% after 65 000 cycles at 10 A g−1. Flexible energy storage is also demostrated.
Shuang Liu   +3 more
wiley   +1 more source

Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. [PDF]

open access: yesChem Sci, 2019
Khayum M A   +8 more
europepmc   +1 more source

Directional Regulation of Zinc Deposition Through Constructing Hierarchical Janus Carbon Matrix with Organic‐Decorated Multi‐Channels

open access: yesAdvanced Science, EarlyView.
A Janus carbon matrix is engineered by covalently anchoring organic sulfonic anions within tubular pores of hierarchical CMK‐5, serving as an interfacial layer for Zn metal anodes. This design establishes a charge gradient for Zn2+ diffusion, enabling the directional deposition of confined and uniform Zn inside the pores while suppressing parasitic ...
Li Gao   +14 more
wiley   +1 more source

Electrochemical Nitrate Reduction Reaction to Ammonia at Industrial‐Level Current Densities

open access: yesAdvanced Science, EarlyView.
This review starts from the mechanism and theoretical basis of electrochemical nitrate reduction reaction (NO3−RR), and systematically summarizes and discusses the design strategies of industrial‐level current density catalysts. In addition, the progress of industrial‐level NO3−RR‐based electrolyzers, including flow reactor and membrane electrode ...
Zhijie Cui   +4 more
wiley   +1 more source

Atomic Precision CoCu Heterodimers with Pseudo‐D3h Symmetry Enable Tandem Nitrate Reduction

open access: yesAdvanced Science, EarlyView.
The Co─Cu heterodimer anchored on nitrogen‐doped graphene oxide substrate facilitates electrochemical nitrate reduction in alkaline medium. Co site promotes water dissociation to supply a proton, while Cu sites enhance nitrate adsorption and activation.
Akash Prabhu Sundar Rajan   +5 more
wiley   +1 more source

Hollow‐Structured Li Hosts Featuring Lithiophilic Metal/Metal Compound Sites for Li‐Metal Anodes

open access: yesAdvanced Science, EarlyView.
This review summarizes some major developments of hollow‐structured nanomaterials as advanced Li hosts for Li‐metal anodes (LMAs). In particular, it focuses on hollow Li hosts with metals or metal compounds as the lithiophilic sites. Some future prospects for the advancement of hollow Li hosts are provided.
Chen Yu   +3 more
wiley   +1 more source

Transition Metal Compounds for Aqueous Ammonium‐Ion Batteries: Storage Mechanisms and Electrode Design

open access: yesAdvanced Science, EarlyView.
Aqueous ammonium‐ion batteries leverage hydrogen‐bond‐mediated NH4+ storage in tunable transition metal compounds. Despite progress in Mn‐, V‐, Mo‐, and W‐based compounds, 2D LDHs, and MXenes, challenges like structural instability and slow kinetics persist. Future advances require robust host design, mechanistic understanding via operando studies, and
Can Li   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy