Results 31 to 40 of about 6,061 (205)
目的/意义人工智能(Artificial Intelligence,AI)技术已在学术和工程应用领域掀起了研究高潮,在地球物理参数和农业气象遥感参数反演方面也表现出了强大的应用潜力。目前大部分AI技术在地学和农学的应用还是“黑箱”,没有物理意义或缺乏可解释性及通用性。为了促进AI在地学和农学的应用和培养交叉学科的人才,本研究提出基于AI耦合物理和统计方法的地球物理参数反演范式理论。方法首先基于物理能量平衡方程进行物理逻辑推理,从理论上构造反演方程组,然后基于物理推导构建泛化的统计方法 ...
MAO Kebiao +15 more
doaj +1 more source
深度学习是近年来发展的人工智能技术。相比于传统浅层学习模型,深度学习具有强大的特征表示和函数拟合能力。深度学习能够从海量数据中提取层次特征,其在流程工业过程数据驱动建模中具有较大的潜力和应用前景。首先简单介绍了深度学习的发展历程;然后,介绍了4类广泛使用的深度学习模型以及它们在流程工业过程数据建模中的应用;最后,在流程工业过程数据建模领域对深度学习进行了简要总结。
袁小锋 +3 more
doaj
A study on time series prediction model based on CRBM algorithm(基于CRBM算法的时间序列预测模型研究)
针对受限玻尔兹曼机(restricted Boltzmann machines,RBM)算法对时序数据预测存在抽取抽象特征向量能力较差和梯度下降能力有限的问题,基于CRBM(conditional restricted Boltzmann machines)算法以及信念网络(deep belief network,DBN)模型,构建了 一种非线性的CRBM-DBN深度学习模型,并采用高斯分布处理输入特征值和对比散度抽样,用于预测时序数据.实验以浙江省近岸海域赤潮时序数据作为输入特征值 ...
ZHOUXiaoli(周晓莉) +4 more
doaj +1 more source
乳腺癌已经成为女性最常见的癌症,核磁共振成像(MRI)在乳腺癌诊断、治疗和预后评估中的作用已逐渐被临床医师认可。随着计算机技术的进步,深度学习已应用于医学的诸多领域,提高了诊断准确率和诊疗效率。本文就深度学习技术在乳腺癌MRI诊断及亚型识别的研究进展进行综述。
白宛鹭, 邢华, 李海滨
doaj
深度强化学习主要被用来处理感知-决策问题,已经成为人工智能领域重要的研究分支。概述了基于值函数和策略梯度的两类深度强化学习算法,详细阐述了深度Q网络、深度策略梯度及相关改进算法的原理,并综述了深度强化学习在视频游戏、导航、多智能体协作以及推荐系统等领域的应用研究进展。最后,对深度强化学习的算法和应用进行展望,针对一些未来的研究方向和研究热点给出了建议。
刘朝阳, 穆朝絮, 孙长银
doaj
研究了基于深度强化学习算法的自主式水下航行器(AUV)深度控制问题。区别于传统的控制算法,深度强化学习方法让航行器自主学习控制律,避免人工建立精确模型和设计控制律。采用深度确定性策略梯度方法设计了actor与critic两种神经网络。actor神经网络给出控制策略,critic神经网络用于评估该策略,AUV的深度控制可以通过训练这两个神经网络实现。在OpenAI Gym平台上仿真验证了算法的有效性。
王日中, 李慧平, 崔迪, 徐德民
doaj
为了研究电力电缆局部放电的模式识别,解决传统单一智能算法识别率低的问题,文中提出了一种融合多深度学习算法的混合智能算法。首先,设计并制作5种典型缺陷模型以模拟实际电力电缆中的缺陷,据此展开实验并收集数据;然后,通过对PRPD谱图的相窗归一化、去极端值等改进,以及绘制PRCD谱图,更全面凸显局部放电有用特征;最后,训练基于PRPD或PRCD的多种深度学习分算法,通过可信度融合得到混合智能算法。实验结果表明,该混合智能算法相比常规单一深度学习算法识别率有显著提升,总体可达98.504 ...
杨朝锋 +6 more
doaj
以机器人为代表的自主智能体系统在工业、服务业等众多领域具有广泛的应用前景和重要的应用价值,但现有自主智能体系统在运动灵巧性、感知信息的完备性、复杂任务和环境的适应性等方面都面临巨大的挑战,难以在开放环境下像人一样灵巧、精准地完成各种复杂操作。而随着以深度学习、深度强化学习为代表的人工智能技术的成功,以操作技能学习为核心的理论研究成为突破自主智能体精准灵巧操作的重要方向,在汲取、融汇联结主义和符号主义的思想精华后构建的操作技能学习框架有望取代传统的示教编程、手工编程模式,以自主学习 ...
王硕
doaj +1 more source
随着深度学习技术的突破和大型数据集的提出,行人轨迹预测的准确度已经成为人工智能领域的研究热点之一。主要对行人轨迹预测的技术分类和研究现状进行详细的综述。根据模型建模方式的不同,将现有方法分为基于浅层学习的轨迹预测方法和基于深度学习的轨迹预测方法,分析了每类方法中具有代表性的算法的效果及优缺点,归纳了当前主流的轨迹预测公开数据集,并在数据集中对比了主流轨迹预测方法的性能,最后对轨迹预测技术面临的挑战与发展趋势进行了展望。
李琳辉, 周彬, 任威威, 连静
doaj
近年来,不断发射的空基观测台持续传送回海量日面图像及日地间气象数据,为采用人工智能技术对太阳活动进行预报预警提供了数据基础。但是,极端天气爆发少,样本量较少;中等程度爆发稍多,样本量较多;常规无爆发天气常见,样本较为集中,样本不均衡状况严重影响机器学习方法在空间天气领域的广泛应用。本文面向多源多通道多尺度日面图像信息,构建了来自SOHO和SDO的1996-2015年日面活动区图像数据集;针对数据分布的不平衡,对太阳活动区图像作耀斑分级与预报。在对比分析元学习算法的基础上 ...
郭 大蕾 +3 more
doaj +1 more source

