Results 1 to 10 of about 2,396 (171)

Application of artificial neural network algorithm in pathological diagnosis and prognosis prediction of digestive tract malignant tumors. [PDF]

open access: yesZhejiang Da Xue Xue Bao Yi Xue Ban, 2023
消化道恶性肿瘤相关的人工神经网络诊断研究成为人工智能研究热点领域。研究工具主要集中在基于卷积神经网络的模型开发上,少部分采用卷积神经网络与循环神经网络联用的方式;研究内容方面则聚焦于基于人工神经网络实现经典组织病理学诊断、利用人工神经网络进行肿瘤分子分型诊断以及预测患者预后情况。本文综述了消化道恶性肿瘤病理诊断及预后预测中人工神经网络算法的相关研究。
Xiao Y, Wang S, Ling R, Song Y.
europepmc   +2 more sources

Short wave protocol signals recognition based on Swin-Transformer [PDF]

open access: yes, 2022
Aiming at the problem that it is difficult to identify the protocol to which the signal belongs in the complex SW channel environment, a SW protocol signal recognition algorithm based on Swin-Transformer neural network model was proposed.Firstly, the ...
Di WU   +5 more
core   +1 more source

Intrusion detection model of random attention capsule network based on variable fusion [PDF]

open access: yes, 2020
In order to enhance the accuracy and generalization of the detection model,an intrusion detection model of random attention capsule network with variable fusion was proposed.Through dynamic feature fusion,the model could better capture data features.At ...
Shenglin YIN, Xinglan ZHANG
core   +1 more source

Elevator Group Control Algorithm Research and Control Program Implementation Based on Fuzzy Neural Network with Four-layer Structure [PDF]

open access: yes, 2017
为提高电梯群控系统的载客效率,减少系统运行能耗,提高运行稳定性,在传统模糊神经网络算法的原理上,设计了基于电梯群控模糊规则的四层模糊神经网络算法,确定四层模糊神经网络结构,定义模糊规则,测算隶属数值,推导隶属度函数,并且基于Matlab提出算法检验方案,给出验证结果。最后采用结构化编程思路在PLC中实现控制程序,并提出可变响应闭环的程序实现方式。In order to improve passenger carrying efficiency of the elevator group control ...
潘廷哲   +3 more
core   +1 more source

A Morphological Analyzer for Rice Shape Based on CNN Method [PDF]

open access: yes, 2021
A morphological analyzer for rice shape with gray and convolution processing of collected images was developed in this article based on embedded hardware platform of charge coupled device (CCD) camera and algorithm principle of convolutional neural ...
BU Dong-wei
core   +1 more source

PINN-type algorithm for shock capturing of hyperbolic equations(双曲型方程激波捕捉的物理信息神经网络(PINN)算法)

open access: yesZhejiang Daxue xuebao. Lixue ban, 2023
双曲型方程的数值求解算法研究一直是偏微分方程研究的热点,其中,双曲型方程的间断捕捉是难点。受物理信息神经网络(physics-informed neural networks,PINN)启发,构造了改进的PINN算法,近似求解双曲型方程的间断问题。将坐标构造的数据集作为神经网络的输入,将PINN算法中的损失函数作为训练输出值与参考解(基于细网格的熵相容格式数据)或准确解的误差值,通过网络优化,最小化损失函数,得到最优网络参数。最后用数值算例验证了算法的可行性,数值结果表明,本文算法能捕捉激波,分辨率高 ...
郑素佩(ZHENG Supei)   +3 more
doaj   +1 more source

Deep Learning-assisted Accurate Defect Reconstruction Using Ultrasonic Guided Waves:一种基于深度学习的超声导波缺陷重构方法 [PDF]

open access: yes, 2020
Ultrasonic guided wave technology has played a significant role in the field of nondestructive testing due to its advantages of high propagation efficiency and low energy consumption.
Da, Y.   +5 more
core   +1 more source

基于差分进化-人工神经网络的沉积河谷地震动放大效应预测模型

open access: yesDizhen xuebao, 2022
探讨了基于差分进化-人工神经网络构建沉积河谷地震响应代理模型的可行性。首先建立沉积河谷对地震波散射的求解方法,以半圆形、V形沉积河谷为例,以入射波条件、沉积内外介质属性、场地形状为特征参数,以沉积河谷地震动放大系数为预测目标参数,构建数据集;其次,建立沉积河谷地震动放大效应人工神经网络、差分进化-人工神经网络算法预测模型,对比两种算法计算精度和稳定性,并进行了特征参数敏感性分析。结果表明:人工神经网络能较好地预测沉积河谷地震动放大效应,使差分进化-人工神经网络预测模型的精度和稳定性显著提高 ...
Sibo Meng, Jiawei Zhao, Zhongxian Liu
doaj   +1 more source

Research and Development of Automatic Detection Instrument for Stored Grain Fungi [PDF]

open access: yes, 2021
Fungus is one of the primary factors endangering the safety of grain storage.The rapid detection of fungi on stored grain in early stage is an effective measure to prevent and control the fungal multiplication and ensure food security.In 2018,an industry
QI Zhi-hui   +3 more
core   +1 more source

BP神经网络的分层优化研究及其在风电功率预测中的应用

open access: yesGaoya dianqi, 2022
为改善BP神经网络算法需要大量训练数据和预测精度有限等问题,提出了以输入层、隐含层和输出层为目标的分层优化思路。首先,利用灰色模型良好的小数据趋势辨别能力对输入层数据进行处理,以更好地提炼数据内部蕴含的数学规律,压缩神经网络所需训练数据样本数量;然后,利用遗传算法优越的全局寻优能力确定隐含层的初始权值和阈值,抑制神经网络隐含层参数无法准确获取所导致的误差较大和泛化能力弱的问题;最后,采用蚁群优化算法对输出层数据进行优化,以进一步改善神经网络模型的计算精度。以波动性较强的风电功率进行算例验证,结果表明 ...
朱显辉   +4 more
doaj  

Home - About - Disclaimer - Privacy