Results 81 to 90 of about 4,079,585 (224)
AbstractThis perspective piece calls for the study of the new field of Intersymbolic AI, by which we mean the combination of symbolic AI, whose building blocks have inherent significance/meaning, with subsymbolic AI, whose entirety creates significance/effect despite the fact that individual building blocks escape meaning.
openaire +3 more sources
Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics
Machine learning (ML) is revolutionizing the development of bioinspired ceramics. This article investigates how ML can be used to design new ceramic materials with exceptional performance, inspired by the structures found in nature. The research highlights how ML can predict material properties, optimize designs, and create advanced models to unlock a ...
Hamidreza Yazdani Sarvestani+2 more
wiley +1 more source
The stability criteria affecting the formation of high‐entropy alloys, particularly focusing in supersaturated solid solutions produced by mechanical alloying, are analyzed. Criteria based on Hume–Rothery rules are distinguished from those derived from thermodynamic relations. The formers are generally applicable to mechanically alloyed samples.
Javier S. Blázquez+5 more
wiley +1 more source
A Case‐Based Reasoning Approach to Model Manufacturing Constraints for Impact Extrusion
A hybrid modeling approach is presented that combines constraint‐based process modeling and case‐based reasoning. The model formalizes manufacturing constraints and integrates simulation data to model complex manufacturing processes. The approach supports manufacturability analysis during product design through an adaptive modeling environment.
Kevin Herrmann+5 more
wiley +1 more source
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley +1 more source
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
Low‐Activation Compositionally Complex Alloys for Advanced Nuclear Applications—A Review
Low‐activation compositionally complex alloys (LACCAs) are advanced metallic materials primarily composed of low‐activation elements, offering advantages such as rapid compliance with operational standards and safe recyclability. This review highlights their potential for extreme high‐temperature irradiation environments as structural materials for ...
Yangfan Wang+8 more
wiley +1 more source
This study explores aerosol jet‐printed (AJP) surface roughness, its effects on the performance of microwave electronics, and its process contributors. First, an electromagnetic model is vetted for AJP's unique roughness signature. Simulations are built which show process‐induced roughness is as significant as conductor resistivity in driving microwave
Christopher Areias, Alkim Akyurtlu
wiley +1 more source
Ways of Applying Artificial Intelligence in Software Engineering
As Artificial Intelligence (AI) techniques have become more powerful and easier to use they are increasingly deployed as key components of modern software systems.
Feldt, Robert+2 more
core